甲状腺素相变材料(PCM)是一类独特的化合物,其可切换的光学和电子特性促进了微电子和麦克风学中新兴应用的爆炸。任何应用程序的关键是PCM可在大量循环中可靠切换在晶体和无定形状态之间的能力。在微电子记忆的情况下,该问题已经进行了广泛的研究,但当前基于PCM的光学设备的耐力较低。要了解限制PCM的故障机制,专门在微电体设备中耐力,我们开发了一个片上电阻的微型供电平台和一个自动多模式表征系统,以分析光学PCM的循环性能。证明了超过50,000个周期的大区块PCM设备可逆切换。
沃尔夫斯堡,03。2024年1月 - 固态电池被认为是未来的技术,也是电池开发的下一个重要一步。该技术承诺更长的范围,较短的充电时间和最大安全性。美国公司量子景观最近达到了一个重要的里程碑,现在由Powerco确认:其固态电池已大大超过了A样品测试的要求,并成功完成了1000多个充电周期。对于WLTP范围为500-600公里的电动汽车,这对应于总里程超过50万公里。同时,该细胞在测试结束时几乎没有老化,但仍具有其容量(或排放能量保留)的95%。在Powerco的Powerco Battery Laboratories中进行了几个月的测试
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
结果:耐力和耐药性运动后的睡眠效率低于对照条件之后。与对照条件相比,耐力运动后的总睡眠时间较低。睡眠光谱分析表明,与对照条件相比,N1睡眠阶段的耐力和抗性练习在N1睡眠阶段导致更大的α功率和N2睡眠阶段的theta功率更大。与对照条件(趋势)相比,耐力运动在N2睡眠阶段导致更大的β功率,在REM睡眠期间更大的α功率和更高的皮质醇水平,并且与阻力运动条件(显着)相比。耐药性运动在N2睡眠阶段导致的β功率低于控制状态,皮质醇水平低于耐力运动状况。
结果:耐力和耐药性运动后的睡眠效率低于对照条件之后。与对照条件相比,耐力运动后的总睡眠时间较低。睡眠光谱分析表明,与对照条件相比,N1睡眠阶段的耐力和抗性练习在N1睡眠阶段导致更大的α功率和N2睡眠阶段的theta功率更大。与对照条件(趋势)相比,耐力运动在N2睡眠阶段导致更大的β功率,在REM睡眠期间更大的α功率和更高的皮质醇水平,并且与阻力运动条件(显着)相比。耐药性运动在N2睡眠阶段导致的β功率低于控制状态,皮质醇水平低于耐力运动状况。
高空平台 (HAP) 是一种重量极轻、高空长航时飞机 (HALE),设计用于在 FL450 和 FL800 之间的高度上保持空中飞行并保持位置数天。携带光学测量设备,科学家可以长时间连续观测地球。与卫星相比,这是一个优势,卫星通常每隔几天才经过同一地点,而且飞行高度要高得多,例如,导致光学分辨率较低。启动和降落的能力允许重新配置和重新定位飞机以执行新的和不同的任务。此外,与卫星相比,飞机的购买和运营成本预计要低得多,包括基础设施(机场与航天港)。图 1 显示了 DLR 目前正在开发的 HAP 配置。我们的想法是制造一种飞行器,它飞行速度非常慢(V EAS = 9 .0 ...11 .0 米/秒),但在推进和空气动力学性能方面非常高效,并且由太阳能供电。这就要求设计能够提供较大的区域来安装太阳能电池板,同时重量要非常轻。在夜间,高度会降低并使用电池,然后在白天飞机重新获得高度时对电池进行充电。目前正在业界开发的类似配置包括空客 Zephyr [ 1 , 2 ](原由 QinetiQ 开发)或 BAE Systems 的 Phasa-35 [ 3 ]。其他有或没有尾翼的类似飞机包括 Solar Impulse [ 4 ] 或 NASA Helios 原型机 [ 5 ]。前两个示例计划用于商业用途,而后者具有更多的科学背景。本文是系列出版物中的第二篇。在第一篇出版物 [ 6 ] 中,作者重点关注:
从技术上优化金属注射成型钛合金 (Ti-MIM) 的加工清洁度在经济上不可行。这个问题在材料加工领域很常见。在寻找替代方法的过程中,这项工作试图在耐受非常高的杂质水平的同时实现卓越的高周疲劳 (HCF) 性能。该概念源于 b 类 Ti 合金对氧溶质的较大耐受性以及在单调载荷下减轻碳化物夹杂物的有害影响的可行性。在本文中,用于疲劳关键应用的 MIM b Ti-Nb-Zr 生物材料是特意以非常高的 O 水平和正常/非常高的 C 水平生产的。无论加工清洁度如何,抗杂质的 Ti 生物材料都表现出超过 600 MPa 的优异 HCF 耐久极限,明显高于在严格限制杂质水平的情况下生产的 a - b Ti 参考合金。这种优异的疲劳性能,同时耐受一定量的杂质,源于对杂质不敏感的“弱”微观结构特征和 Ti 基质对疲劳小裂纹的增强抵抗力。此外,在某些情况下,可能出现由两种相互竞争的裂纹起始机制引发的条件疲劳二元性,起始于微尺度孔隙 a - 片状体和大孔隙 TiC 夹杂物。本合金工艺开发的成功可能会大大放宽对活性金属的加工要求。� 2021
为了克服NVM中的能耗和写入耐力问题,开发了两种方法。第一种方法开发基于硬件的写优化技术[1,10,15,23,46],这些技术主要基于读取前写入(RBW)模式[52]。在RBW中,写入操作𝑤对存储位置的写操作始终先于读取。将𝑤书写的值与𝑥的旧内容进行了比较,并且只有不同的位。这减少了翻转位的数量,从而减少了能耗并增加了写入耐力[52]。第二种方法通过最大程度地减少写入放大[4,9,25,34,45,54]来解决能耗和写入耐力的问题。但是,这些方法将能效问题与写入放大问题相结合。在许多情况下,导致减少写入放大的技术具有提高能量效率和写入耐力的副作用,但这种情况并非总是如此,如先前的工作[6,26,27]所示,并且我们在本文中的评估。
文档说明:论文标题:平流层竞赛:到 2020 年全球高空长航时轻于空气的通信和监视系统的运行状态。2009 年。由国家情报总监办公室 (ODNI) 发布 要求日期:2017 年 9 月 18 日 发布日期:2024 年 12 月 4 日 发布日期:2024 年 12 月 23 日 文件来源:FOIA 请求 信息管理办公室主任 ATTN:FOIA/PA 国家情报总监办公室 华盛顿特区 20511 电子邮件:ODNI_FOIA@odni.gov governmentattic.org 网站(“本网站”)是第一修正案自由言论网站,是非商业性的,向公众免费开放。本网站及其提供的资料(如本文件)仅供参考。 governmentattic.org 网站及其负责人已尽一切努力使这些信息尽可能完整和准确,但是,在印刷和内容方面可能存在错误和遗漏。governmentattic.org 网站及其负责人对任何个人或实体因 governmentattic.org 网站或本文件中提供的信息直接或间接造成或声称造成的任何损失或损害不承担任何责任。网站上发布的公共记录是通过适当的合法渠道从政府机构获得的。每份文件都标明了来源。对网站内容的任何疑虑都应直接向相关文件的发布机构提出。GovernmentAttic.org 对网站上发布的文件内容概不负责。
声音水平EN 54-3通过频率和声音模式EN 54-3通过耐用性EN 54-3通过施工EN 54-3 IP21C - A型标记和数据EN 54-3通过可重复性EN 54-3通过操作EN 54-3 PASS PARTIANIC EN 54-3 PASS PASS PASS PAIRS PLASE EN 54-3 PAINS DRAVE DRED HED(操作)EN 54-3 PASS EN 54-3-3-3-3-3-3-3-3-3-3-3 PASS Damp heat, steady state (endurance) EN 54-3 PASS Sulphur dioxide (SO2) corrosion (endurance) EN 54-3 PASS Shock (operational) EN 54-3 PASS Impact (operational) EN 54-3 PASS Vibration, sinusoidal (operational) EN 54-3 PASS Vibration, sinusoidal (endurance) EN 54-3 PASS Electromagnetic compatibility (EMC), immunity