请求 ID:8c78b83faed77c9d-LAX IP:205.234.157.81 UTC 时间:2024-09-23T07:11:16+00:00 浏览器:Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36
劳伦斯利弗莫尔国家实验室与高能材料中心(劳伦斯利弗莫尔和桑迪亚国家实验室的合作伙伴)合作,正在开发安全、环保地销毁炸药和推进剂的方法,这是实验室辅助非军事化任务的一部分。由于冷战的结束和重点转向减少库存,许多常规和核武器都将退役并迅速拆除和非军事化。这些弹药的主要成分是炸药和推进剂,或高能材料。能源部拥有数千磅高能材料,这些材料来自潘特克斯工厂的拆除作业。国防部的非军事化库存中有数亿磅高能材料,每年增加数百万磅。
量子测量是量子信息研究和应用中发挥关键作用的基本操作。我们通过比较它们各自的测量反作用和每个光子的测量信噪比,研究了在电路量子电动力学装置中使用光的量子、相干和经典热态如何影响量子测量的性能。在强色散极限下,我们发现热光能够以与相干光相当的效率进行量子测量,而单光子光的表现则优于热光。然后,我们分析了每种测量方案的热力学成本。我们表明,单光子光在单位信息增益的能量成本方面表现出优势,达到了基本的热力学成本。
该项目是 BESS 的一部分,第一个竣工的项目是 Hex BESS,该项目于 2023 年 11 月在西开普省伍斯特启用。根据 Eskom 的一份媒体声明,“BESS 项目是对南非长期电力危机的迫切需求之一的直接回应,通过增加存储容量来加强电网,同时使现有的发电能源结构多样化。它使用大型公用事业电池,总容量为每天 1440MWh,光伏容量为 60MW。Hex 站点专门设计用于存储 100MWh 的能源,足以为莫塞尔湾或豪伊克等城镇供电约五个小时。它是 Eskom BESS 项目第一阶段的一部分,该项目包括在夸祖鲁-纳塔尔省、东开普省、西开普省和北开普省的八个 Eskom Distribution 变电站安装约 833MWh 的额外存储容量。”
摘要:脂肪组织是能量平衡的中心参与者,表现出明显的代谢柔韧性,通常在肥胖症和2型糖尿病(T2D)中受到损害。脂肪细胞内的线粒体功能障碍会导致脂质处理效率低下和氧化应激增加,从而共同促进了肥胖及其并发症中心的全身代谢破坏。本评论探讨了线粒体在肥胖和T2D的背景下,线粒体在改变主要脂肪细胞类型(白色,棕色和米色)的代谢功能中所起的关键作用。具体而言,在白色脂肪细胞中,这些功能障碍会导致脂质加工受损和增加的氧化应激负担,从而加剧了代谢性障碍。相反,线粒体功能不受损害,没有其热能能力,从而降低了棕色脂肪细胞中最佳能量消耗的能力。米色脂肪细胞独特地结合了白色和棕色脂肪细胞的功能特性,在适当的刺激下具有帽质脂肪细胞的形态学相似性,同时拥有帽质脂肪细胞,以转化为富含线粒体,能量燃烧的细胞。每种类型的脂肪细胞都会显示出独特的代谢特征,该特征受每种细胞类型的线粒体动力学的控制。这些独特的线粒体代谢表型受包括转录因子,共激活因子和酶的专业网络的调节,这些网络共同确保了细胞能量过程的精确控制。有力的证据表明,在因果关系与肥胖引起的T2D的因果关系中,脂肪细胞线路的代谢和上游调节剂有缺陷。旨在改善脂肪细胞线粒体功能的有针对性干预措施为增强全身性大量营养素氧化提供了有前途的治疗途径,从而可能减轻肥胖症。理解脂肪细胞中线粒体功能的进步强调了打击肥胖和相关合并症的方法的关键转变。重新点燃脂肪组织中卡路里的燃烧,以及其他重要的代谢器官,例如肌肉和肝脏,鉴于脂肪组织在能量储存和释放中的广泛作用至关重要。
含能材料和弹药用于火箭、导弹、弹药和烟火装置等任务关键型应用。这些材料是多种不同化学物质的复杂混合物,可制成粉末、粘稠糊状物、高粘稠糊状物和液体等产品,每种产品都必须按照严格的标准制造。英国火箭公司、爱好者和世界各地的其他人也受益于这些改进。RAM 还可以比传统方法快 10 倍至 100 倍地进行研磨、筛分和涂覆,但操作却足够温和,可以处理 3D 打印含能和爆炸性墨水。
近几十年来,对能量材料的性质的需求和多样化的要求导致了广泛的研究活动,以改善性能和IM行为。此外,在恶劣条件下的能量材料的生存能力,用于具有高机械或热载荷的应用,越来越多地成为研发的重点。这取决于对确定材料特性的结构细节的日益了解。虽然分子结构给出了新的能量材料功能和性能的第一印象,但在微观和中层处的结构决定或调节基本特征,例如灵敏度,兼容性,兼容性和机械稳定性。高级结构模型的示例包括共晶,核心,多层或功能分级的炸药以及加上制造的多组分推进剂。结构性质伴随着能量材料开发的所有步骤。
摘要:近年来,作为低成本,导电层的半导体聚合物已受到越来越多的关注。为了显示合理的电导率,必须掺杂半导体聚合物,该过程需要氧化或还原共轭主链和结构重排,以便将电荷平衡柜台容纳到聚合物网络中。在这里,我们旨在了解这种结构重排如何有助于掺杂的能量。我们利用了一个事实,即摩擦对齐的聚(3-己基噻吩-2,5-二苯基)(p3HT)膜包含两个多晶型物,一种具有晶体结构,其密度低于在未对齐的膜中观察到的结构,而另一个具有更紧密的,更紧密的浓度,浓度更紧密的晶状体结构。分别相对于底物,这两种结构分别是面对面和边缘的,因此它们的衍射在Q空间中很好地分开,因此可以分别监测每个种群的掺杂诱导的结构变化。当电影掺杂2,3,5,6- tetrafluoro-7,7,8,8-四甲苯喹啉甲烷烷(F 4 TCNQ)时,比浓度更容易诱导的结构变化,而不是浓度更容易诱导的结构变化。这一发现表明,在掺杂过程中,聚合物晶体结构的重新排列是一个重要的能量术语,并且可以通过设计新聚合物来促进半导体聚合物的掺杂,在该聚合物中,可以在结构减少的聚合物及时中容纳掺杂剂。s
结果:与 HVs 相比,AS 患者(AS-T2D 和 AS-noT2D 合并)在 AVR 前表现出 PCr/ATP(平均值 [95% CI];HVs,2.15 [1.89, 2.34];AS,1.66 [1.56, 1.75];P <0.0001)和血管舒张剂应激 MBF(HVs,2.11 mL min g [1.89, 2.34];AS,1.54 mL min g [1.41, 1.66];P <0.0001)受损。 AVR 之前,在 AS 组中,与 AS-noT2D 患者相比,AS-T2D 患者的 PCr/ATP(AS-noT2D,1.74 [1.62, 1.86];AS-T2D,1.44 [1.32, 1.56];P =0.002)和血管舒张剂应激 MBF(AS-noT2D,1.67 mL min g [1.5, 1.84];AS-T2D,1.25 mL min g [1.22, 1.38];P =0.001)较差。在 AVR 之前,AS-T2D 患者的 PCr/ATP(AS-T2D,1.44 [1.30, 1.60];T2D 对照组,1.66 [1.56, 1.75];P =0.04)和血管扩张剂应激 MBF(AS-T2D,1.25 mL min g [1.10, 1.41];T2D 对照组,1.54 mL min g [1.41, 1.66];P =0.001)也比基线时的 T2D 对照组差。AVR 后,AS-noT2D 患者的 PCr/ATP 恢复正常,而 AS-T2D 患者没有改善(AS-noT2D,2.11 [1.79, 2.43];AS-T2D,1.30 [1.07, 1.53];P =0.0006)。接受 AVR 治疗后,两组 AS 的血管扩张剂应激 MBF 均有所改善,但 AS-T2D 患者的 MBF 仍然较低(AS-noT2D,1.80 mL min g [1.59, 2.0];AS-T2D,1.48 mL min g [1.29, 1.66];P =0.03)。PCr/ATP 不再有差异(AS-T2D,1.44