摘要:已达到使用寿命或已过时的弹药被视为危险废物,因为其中含有必须退役的能量材料。处理弹药的技术之一是使用带有复杂气体处理系统的焚烧炉;然而,这种处理过程在焚烧炉容量、能源需求和高成本方面存在重大限制。本文评估了通过将军用弹药中的能量材料加入民用乳化炸药中作为破坏性处置的替代方案,从而避免潜在的一次能源和环境效益。这种方法遵循循环经济原则,如 BS 8001:2007 中所述,通过将残留物加入新产品中,为残留物提供新的服务。基于先前对传统处置过程和乳化炸药生产的研究的原始数据,实施了前瞻性生命周期模型。该模型应用系统扩展来计算将弹药中的能量材料加入民用炸药中时避免的环境负担。结果表明,与传统的处置工艺相比,通过高能材料增值再利用弹药大大减少了所有类别的环境影响。好处主要来自于避免弹药处置中的焚烧和烟气处理过程,以及
日常工作中处理危险品的工人,例如物流行业中的物料搬运设备操作员、叉车操作员、仓库/库存助理、仓库保管员、库存/物流协调员、索具工/信号工、调度/运输操作员、最后一英里交付/集装箱司机、起重主管、交通/调度协调员和运输管理项目主管以及海运行业中的船舶容量管理执行官和积载计划员/协调员。
作者:B Fidanovski · 2020 — 质量和安全生产的重要起点。 和储存,以及正确的处理和处置是……Jurnal of Energetic Materials,2014,32:1,页……
• Solar radiation (ultraviolet (UV), x-rays) • Charged particle radiation (electrons, protons) • Cosmic rays (energetic nuclei) • Temperature extremes & thermal cycling • Micrometeoroids & orbital debris (space particles) • Atomic oxygen (AO) (reactive oxygen atoms) • Planetary dust and wind • Reactive atmospheres
主题:2D/Quantum/Energy材料主席:D。P. Mahapatra/Co主席:Ajay Nayak Keynote 4 - Bibhudatta Rout,美国北德克萨斯大学德克萨斯州,德克萨斯州,美国德克萨斯大学:使用Energetic Ion Beams对极端条件进行调查材料和设备。
近 50 年来,巴特尔一直从事与能量研究相关的研究、设计、测试和评估 (RDT&E)。巴特尔的高能研究实验室区 (HERLA) 设施提供全面的能量设计(包括初级和次级)、工程、建模、测试和低速率初始生产能力。我们拥有经过验证的能力,可以将新的能量概念从构思、配方、原型设计和制造、特性描述和性能测试,到数十到数千个单元的制造。所有巴特尔爆破设施都位于 HERLA,具有原型制造能力,允许对原型能量材料进行实验评估,而无需进行 DOT 临时危险分类。
量子计算机的能量效率问题最近才引起人们的关注。对于操作具有目标计算性能的量子计算机所需的资源以及能量需求如何影响可扩展性的精确理解仍然缺失。在这项工作中,研究了囚禁离子装置中量子傅里叶变换 (QFT) 算法的一种实现。主要重点是获得量子计算能量成本的理论表征。通过分析装置的组成部分和量子计算所涉及的步骤(从离子的冷却和准备到算法的实现和结果的读出),估算了实验的能量成本。讨论了能量成本的潜在扩展,并用它来找到与最先进的经典超级计算机相比能量量子优势的可能阈值。
摘要。在本文中,研究并制定了基于Al和Cuox的能量纳米级粉末材料的电泳沉积的特征和主要细微差别。我们成功证明了在沉积过程中使用悬架非停车超声混合和水平电极放置的优势。显示了在导电拓扑模式上局部沉积局部沉积的可能性。研究了沉积材料的质量对局部形成的能量材料的波燃烧过程行为的影响。这项研究为多目标优化提供了指导,并增加了局部电泳沉积过程的可重复性。结果表明,可以将Alcuox混合物整合到微能系统中,作为具有出色特异性特征和高燃烧速率的材料。
与 NASA 的相关性 • NASA IG 审查中发现的一些违规行为包括将不兼容的能量材料存放在一起、在最初设计时并非用于存放能量材料的设施中存放爆炸物以及存放易分解且可能高度不稳定的能量材料。 • NASA IG 发现,除了缺乏资源外,缺乏监督和培训也是导致违规行为的主要因素。 • 中心必须共同努力,分享专业知识、培训和经验教训。随着旧项目和计划的结束,NASA 应该移除当前工作不需要的能量材料。工作人员必须确定正确存储和处理流程和程序中的失误并建立缓解措施。通过这样做,他们将帮助 NASA 中心和设施保护他们的运营、他们的 NASA 同事和公众。