废物能量处理是一项国际挑战,许多国家都积极参与处理废弃或不合格的炸药、推进剂、过时弹药、过去冲突中未爆炸的弹药、采矿和石油压裂作业产生的废弃炸药、烟花和其他自燃材料。CHC 爆炸物废物处理设施是美国仅有的三家接受和处理爆炸性危险废物的成熟商业设施之一。国防部 (DoD) 拥有和运营着许多处理设施,用于处理废弃的军用炸药、弹药和推进剂。最近,路易斯安那国民警卫队被要求签订一个新的热处理系统,以处理路易斯安那州明登营的 1500 万磅 M-6 推进剂和 300 万磅其他炸药。明登营对话小组从众多提议技术中挑选出一套密闭燃烧炉和相关污染消除系统,并获得了环境保护署 (EPA) 的批准,用于处理大量单一推进剂和清洁燃烧点火器。该系统已安装完毕,承包商 Explosive Service International Inc. (ESI) 已销毁超过 1100 万磅的 M-6,预计 2017 年 5 月完工。
摘要:在此,我们开发了一个框架来理解第一部分中提出的观测结果。在这个框架中,由于随着水深 H 的减小幅度受限,内潮在变浅时会饱和。从这个框架可以推导出内潮平均能量的估计值;具体来说,能量 h APE i 、能量通量 h FE i 和能量通量发散 › xh FE i 。由于我们观察到耗散 h D i ' › xh FE i ,我们也将 › xh FE i 的估计值解释为 h D i 。这些估计值代表了内潮在内大陆架饱和时的能量参数化。参数化完全取决于深度平均分层和水深测量。总结一下,h APE i 、h FE i 和 › xh FE i 的跨陆架深度依赖性与冲浪区浅滩表面重力波的依赖性类似,这表明内陆架是内潮汐的冲浪区。针对一系列数据集对我们的简单参数化进行的测试表明,它具有广泛的适用性。
摘要 天然的抗弯曲装甲结合了坚硬的、离散的鳞片,附着在软组织上,提供独特的表面硬度(用于保护)和柔韧性(用于不受阻碍的运动)组合。鳞片状皮肤现在是一种鼓舞人心的合成防护材料,它具有吸引人的特性,但在柔韧性和防护性之间仍然存在有限的权衡。特别是,弯曲鳞片状皮肤,使鳞片在内弧面,会卡住鳞片并使系统显著变硬,这在手套等系统中是不可取的,因为手套的鳞片必须覆盖手掌侧。大自然似乎已经通过创造可以形成皱纹和褶皱的鳞片状皮肤解决了这个问题,这是一种非常有效的机制,可以适应大的弯曲变形并保持弯曲柔顺性。这项研究的灵感来自这些观察:我们探索了软膜上的刚性鳞片如何以受控的方式弯曲和折叠。我们使用离散元建模和实验相结合的方式研究了不同屈曲模式的屈曲能量和稳定性。具体来说,我们展示了鳞片如何诱导稳定的 II 型屈曲,这对于皱纹的形成是必需的,并且可以提高仿生保护元件的整体弯曲柔顺性和灵活性。
摘要:在氢产生中,阳极氧的演化反应(OER)限制了能量转化的效率,并且还会影响质子交流膜水电氧化质量的稳定性。广泛使用的基于IR的催化剂从不良活性中产生,而基于RU的催化剂则倾向于在OER条件下溶解。这与晶格氧(晶格氧氧化机制(LOM))的参与有关,这可能导致晶体结构的崩溃并加速活性RU物种的浸出,从而导致工作稳定性较低。在这里,我们开发了Sr -ru -ir三元氧化物电催化剂,可在酸性电解质中获得高活性和稳定性。催化剂在10 mA cm -2时达到了190 mV的超电势,并且在运行1,500小时后,超电势保持在225 mV以下。X射线吸收光谱和18 O同位素标记的在线质谱研究表明,OER期间晶格氧的参与受到Ru-O- ir局部结构的相互作用的抑制,这是如何改善稳定性的情况。通过SR和IR调节活性RU位点的电子结构,以优化OER氧中间体的结合能。■简介
新型的电晕病毒疾病2019(COVID-19)大流行使全世界的死亡率射击。因此,为了打击这种疾病,我们设计了一种来自严重急性呼吸综合征病毒2(SARS-COV-2)的多种蛋白质疫苗,采用免疫信息学方法,在计算机中验证,以稳定,非过敏和抗原性。细胞毒性T细胞,辅助T细胞和B细胞表位是从世界各地分离的四种病毒菌株中的六个保守蛋白序列进行计算预测的。与B细胞表位重叠的T细胞表位一起包括在疫苗构建体中,以确保体液和细胞介导的免疫反应。在构建体的N末端添加了霍乱毒素的β-亚基,以增加免疫原性。在疫苗中甚至预测了诱导表位的干扰素 - γ诱导表位。分子对接和结合能量研究表明,疫苗与免疫刺激性Toll样受体(TLR)-2、3、4。疫苗的分子动力学模拟确保了生物系统中的体内稳定性。疫苗的免疫模拟表明免疫反应升高。在表达载体中疫苗的有效翻译被确保在计算机克隆方法中使用。当然,这种疫苗结构可以可靠地对抗Covid-19。
随着我们的团队在整个指挥部的努力,我们看到许多基础设施项目在各个阶段迅速推进。该指挥部见证了重要建筑物的破土动工,包括 8 月 19 日的高级能量学研究实验室第二阶段军事建设 (MILCON) 和 10 月 28 日的化学、生物和放射防御 (CBRD) 部门的海上化学检测实验室和建模与仿真中心。除了许多其他修复和现代化项目外,2022 年,俄克拉荷马州麦卡莱斯特支队期待已久的 HVAC 升级开始,海军支援设施 (NSF) Indian Head 完成了数百万美元的铺路和混凝土工程,计划更换 NSF Indian Head 的所有饮用水和一些河水设施,并举行了剪彩仪式,指挥部完成了其价值 1 亿美元的最先进的液体硝酸酯制造敏捷化学设施 (ACF)。这些项目代表了多年来的巨大努力,也是 NSWC IHD 继续优先考虑其基础设施需求以满足作战人员当前和未来需求的绝佳例子。这些新设施将提高我们生产战斗部队在全球舞台上与同行竞争对手进行持续战略竞争所需的能源产品的关键能力。
首次实现了聚变“科学盈亏平衡”(即,目标增益 G 目标为 1,总聚变能量输出 > 激光能量输入)(此处,G 目标 ∼ 1.5)。本文报告了设计变更的物理原理,这些变更导致在国家点火装置上使用激光间接驱动进行首次受控聚变实验,以产生大于 1 的目标增益,并超过了之前根据劳森标准获得的点火所需的条件。成功的关键因素在于减少“滑行时间”(激光脉冲结束和内爆峰值压缩之间的持续时间)和最大化传递到“热点”(聚变燃料的产量产生部分)的内部能量。解释了滑行时间与动能向内能的最大效率转化之间的联系。不对称和流体动力学诱导混合的能量学后果是高产量大半径内爆设计实验和设计策略的一部分。本文展示了不对称和混合如何合并为一个关键关系。结果表明,混合会产生与内爆不对称影响类似的动能成本,从而将点火阈值转移到更高的内爆动能——这一因素通常不包含在广义劳森标准的大多数陈述中,但关键的必要修改显然已经显现出来。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸非典型性大规模搁浅的证据表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会伤害动物。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸大量搁浅的异常现象不断出现,这表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明,在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会对动物造成伤害。
声音对海洋哺乳动物的影响传统上被定义为伤害或行为紊乱。最早对行为紊乱的担忧是,高噪音会通过掩盖微弱信号来减少通信范围。很少有研究记录这种影响,但最近的研究强调了动物用来补偿高噪音的机制。许多研究已经记录了行为变化与暴露的关系,但事实证明很难将这些变化与对个体动物福利或种群状况的影响联系起来。解释影响的有希望的方法包括避开栖息地、觅食的能量学以及将反捕食者行为模型应用于人类干扰。在 20 世纪 90 年代,伤害的声学标准是基于暂时性听力损失而指定的。海军声纳演习期间,喙鲸非典型性大规模搁浅的证据表明,某些物种在某些环境下,在较低暴露水平下的行为反应可能会导致受伤或死亡。一头带标签的喙鲸对实验性播放的中频声纳声音表现出与虎鲸叫声相似但较弱的反应,这表明在暴露于不太可能直接造成伤害的声音水平后,反捕食者反应可能会伤害动物。