其他任务包括海军科学家培训和交流计划轮换,在内华达州法伦的海军打击和空战中心工作。在担任 NAWCWD 靶场安全官两年后,卡雷尼奥先生于 2013 年 1 月被指派到海军航空系统工程部领导合成制导演示计划,成功演示了战斧反舰能力。2015 年 8 月,他成为武器和能源部武器副主任,并于 2016 年 3 月被选为 SES 部门负责人。2020 年 3 月,卡雷尼奥先生被任命为目标和动能效应产品总监。2020 年 5 月,他被选为研发组主任,并一直任职到 2021 年 3 月,然后被选为现任职位。
项目描述:本项目组合的目标是开发理解复杂、异质和反应性材料动力学所需的基本科学知识,从而实现弹药和推进领域的重大进步。因此,本项目组合支持的研究领域旨在发现、描述和可靠地预测与爆炸物的高能量、固体推进剂燃烧和受冲击载荷影响的材料结构动力学相关的基本化学、物理学、流体动力学和材料科学。本项目组合中的研究总体范围将通过实验、数值和理论努力的平衡组合来实现。本项目组合感兴趣的基础科学对于未来空军和太空部队武器系统及其推进能力的革命性进步必不可少,包括提高能量密度、作战效率、基于效果的优化和恶劣环境下的生存能力。
纳米技术的快速发展和纳米材料合成方法的不断改进,使其具有特殊的可控形状、尺寸、结构和物理化学性质,从而将其应用范围扩展到工程、能量学、光子学、等离子体学、生态学和其他重要方向。1 如今,纳米材料在广为人知的生物医学领域的应用试验非常有前景,例如牙周病学、牙髓病学、早期诊断、治疗诊断学、温控药物释放和再生过程刺激甚至局部热疗。2 – 4 纳米级金属结构(尤其是银)的行为研究对于上述目的具有重要意义 5,6,因为它具有独特的物理化学、生物、催化和杀菌性能。7 – 10 这些特性在局部表面等离子体共振 (LSPR) 条件下尤其明显。 11 LSPR 效应
近期的显着实验已经观察到零场的分数量子异常霍尔(FQAH)效应,并且在扭曲的半导体双层t mote 2中的异常高温度,因此是第一个真实的分数分数Chern绝缘子。令人着迷的观察结果,例如观察到分数霍尔效应的扭曲角度的不存在整数大厅效应,但确实无法解释。实验相图作为扭角的函数仍有待确定。通过综合数值研究,包括纠缠光谱,我们表明,在整个扭曲角范围θ≤4°整个竞争状态的能量及其能量差距上,带对竞争状态的能量及其能量差异具有很大的定性和定量作用。这为对众多相关的Moir'E超级晶格以及对这些引人入胜的系统的相图的理解而进行了现实研究奠定了基础。
牛津大学牛津大学牛津大学3PU的物理系; B普林斯顿大学,新泽西州普林斯顿大学天体物理科学系; 08544; C芝加哥大学天文学与天体物理学系,芝加哥,伊利诺伊州60637; D 14627年罗切斯特大学物理与天文学系; Rochester Univers,Rochester,纽约州罗切斯特大学激光Energetics E实验室; 14623年; F英国贝尔法斯特皇后大学贝尔法斯特皇后大学数学与物理学学院; G Central Laser设施,卢瑟福·阿普尔顿实验室,DIDCOT OX11 0QX,英国; h英国格拉斯哥G4 0NG的Strathclyde大学物理系;我的等离子科学与融合中心,马萨诸塞州剑桥,马萨诸塞州02139; J Argonne National Laboratory,Argonne,伊利诺伊州60439年Argonne National Laboratory J数学和计算机科学部; k Laboratoire pour l'iperized des laser Intenses,CNR,COMSARIAT``a l'' l日本大阪苏瓦大学大阪大学工程研究生院; M Lawrence Livermore国家实验室,Livermore,CA 94550; n理论Astrophysikalischer等离子体Forschungsgruppe,Max-Planck-institut f ur kernphysik,69029 Heidelberg,德国; o乌尔山国家科学技术研究所,乌尔桑44919,乌尔桑国家科学学院物理学系;内华达大学里诺大学的物理系89557
铁电纤锌矿具有彻底改变现代微电子学的潜力,因为它们很容易与多种主流半导体平台集成。然而,为了与互补金属氧化物半导体 (CMOS) 电子产品兼容,需要大幅降低反转其极化方向和解锁电子和光学功能所需的电场。为了了解这一过程,我们用扫描透射电子显微镜在原子尺度上观察并量化了代表性铁电纤锌矿 (Al 0.94 B 0.06 N) 的实时极化切换。分析揭示了一种极化反转模型,其中纤锌矿基面中褶皱的铝/氮化硼环逐渐变平并采用瞬态非极性几何结构。独立的第一性原理模拟揭示了通过反极性相的反转过程的细节和能量。该模型和局部机械理解是这种新兴材料类别的属性工程工作的关键初始步骤。B
需要加热时,请格外小心,确保爆炸性物质不会直接接触加热元件。除非配备了超控关闭装置,否则应始终监控加热系统,以防止主温度控制失效。在实验设计期间,应考虑为反应容器提供紧急冷却。切勿用研钵和研杵研磨任何爆炸性物质。切勿通过合适的玻璃过滤能量。仅使用纸质过滤器。硝酸铵和二硝基甲苯 (DNT) 等不敏感和低能量材料只能以纯商业形式在实验室规模上处理。涉及此类材料的合成仍然限制在 500 毫克。在气管中使用 DNT 时,请确保管密封良好,附近没有加热装置,并有防撞保护。
Sownd博士于2002年从印度钦奈的M.G.R医科大学博士获得MBBS学位。他于2004年从加拿大萨斯喀彻温省大学完成了药理学硕士学位,论文介绍了20-赫特在盐敏感高血压中的作用。随后,他于2009年从加拿大艾伯塔大学艾伯塔大学的生理学系获得了博士学位,原因是他关于先兆子痫内皮细胞氧化应激机制的论文。在这段时间里,他获得了艾伯塔省医学研究基金会以及加拿大心脏与中风基金会的学生资格。作为艾伯塔省的卫生解决方案,艾伯塔大学(University of Alberta)的博士后研究员(2011- 2014年),他研究了心脏肥大和心力衰竭中心脏能量(能量代谢)的变化。随后,他完成了医学系的临床研究奖学金,重点是高血压。
致谢 作者感谢以下研究人员对这项工作的贡献:美国国家可再生能源实验室 (NREL) 的 Lieve Laurens、Phil Pienkos、Eric Knoshaug、Tao Dong、Jake Kruger、Nick Nagle、Yat-Chen Chou、Christopher Kinchin、Bruno Klein 和 Zia Abdullah;爱达荷国家实验室 (INL) 的 Lynn Wendt、Brad Wahlen;以及重塑可再生能源藻类碳能量学 (RACER) (BETO 资助) 项目的其他合作伙伴。本报告根据这些研究人员提供的意见,概述了用于更新 NREL 技术现状 (SOT) 基准模型的关键单元操作的研究数据;然而,它并非旨在详尽总结所有研究活动、方法或数据输出,我们将参考这些研究人员和其他人的研究工作来提供进一步的背景信息。