嵌合抗原受体 (CAR) T 细胞疗法在过去十年中已被证明是癌症治疗的突破,在对抗血液系统恶性肿瘤方面取得了前所未有的成果。所有获批的 CAR T 细胞产品以及许多正在临床试验中评估的产品都是使用病毒载体生成的,以将外源遗传物质部署到 T 细胞中。病毒载体在基因传递方面具有悠久的临床历史,因此经过了反复优化以提高其效率和安全性。尽管如此,它们半随机整合到宿主基因组中的能力使它们有可能通过插入诱变和关键细胞基因失调而致癌。CAR T 细胞给药后的继发性癌症似乎是一种罕见的不良事件。然而,过去几年记录的几起案例使人们关注到这个问题,鉴于 CAR-T 细胞疗法的部署相对较晚,这个问题迄今为止可能被低估了。此外,在血液系统恶性肿瘤中获得的初步成功尚未在实体瘤中复制。现在很明显,需要进一步增强以使 CAR-T 细胞增加长期持久性,克服疲惫并应对免疫抑制肿瘤微环境。为此,各种基因组工程策略正在评估中,大多数依赖于 CRISPR/Cas9 或其他基因编辑技术。这些方法可能会在产品细胞中引入意外的、不可逆的基因组改变。在本综述的第一部分,我们将讨论用于生成 CAR T 细胞的病毒和非病毒方法,而在第二部分,我们将重点介绍基因编辑和非基因编辑 T 细胞工程,特别关注其优势、局限性和安全性。最后,我们将严格分析不同的基因部署和基因组工程组合,为生产下一代 CAR T 细胞制定具有卓越安全性的策略。
摘要 带隙工程是开发光电器件的关键方法,特别是对于近红外 (NIR) 应用,其中精确控制材料的电子和光学特性至关重要。本研究探讨了三种 III-V 半导体合金——砷化镓锑 (GaAsSb)、砷化镓锑氮化物 (GaAsSbN) 和砷化镓铝 (GaAlAs)——在定制带隙以满足 NIR 器件特定需求方面的潜力。GaAsSb 通过调整锑含量提供可调带隙,使其成为 NIR 光电探测器和激光二极管的多功能材料。GaAsSbN 中的氮进一步降低了带隙,增强了其对长波长应用的适用性,并提供与 GaAs 基板更好的晶格匹配。GaAlAs 以其稳定性和与 GaAs 的兼容性而闻名,可用于形成异质结和量子阱,从而实现高效的载流子限制和发射控制。通过改变这些合金的成分,工程师可以实现精确的带隙调节,从而优化一系列 NIR 波长范围内的器件性能。本摘要强调了成分变化、应变工程和量子阱设计在开发先进 NIR 光电器件中的重要性。尽管存在材料质量和热管理等挑战,但这些材料的持续改进对电信、医学成像和传感技术中的下一代 NIR 应用具有重要意义。简介 带隙工程是半导体技术中的一项基本技术,可以精确操纵材料的电子和光学
b'插入\ xc3 \ xbchrung在软件开发软件中的编程中
工学学士课程成果 (PO)(机电一体化工程) 工学学士毕业生机电一体化课程将具有课程成果 (PO) 毕业生属性 (GA)
作者:B CLAYTON · 2024 — Adamson,《数字工程对国防采购的影响》……例如,自定义工具集可能缺乏与美国的互操作性……
与小分子药物或抗体不同,基于细胞的thera可能会通过启动上下文依赖性治疗作用来感知各种输入信号和重新考虑(1,2)。尽管自重组DNA和病毒技术的早期以来,尽管基于基因和细胞的疗法已被视为具有巨大的希望,但在过去的十年中,它们才刚刚开始在制药行业中占据中心地位(3 - 5)。目前,这种疗法的监管部门批准正在加速生物技术和医学的技术革命(6),这些变化有可能在全球经济和社会中产生构造转变。例如,格利贝拉(Glybera)于2012年在欧洲市场上被释放为一种基因治疗疗法,旨在逆转脂蛋白脂肪酶缺乏症,但几年后,每名患者的治疗费用迫使其征收100万美元(5)(5)。,尽管最近批准的嵌合
2024 年 2 月 20 日 — Microelectronics Journal 129 (2022) 10553。内容列表可在 ScienceDirect 上找到。Microelectronics Journal 期刊主页:www.elsevier.com/locate/mejo。
我们介绍了五项有关最近的ICS奖项获奖者的不同主题的科学报告:2022年ICS -Adama技术创新奖的获得者Aharon Blank撰写了一份关于“磁共振 - 从光谱工具到实用技术设备的磁共振”的报告”; 2022年ICS优秀年轻科学家奖的获得者Ori Gidron撰写了“芳香材料 - 扭曲的故事”; ODED HOD是2022年ICS Tenne纳米级科学奖的获得者,他撰写了一篇题为“ Slippery Science”的文章; 2022 ICS优秀科学家奖的获得者Shlomo Magdassi和他的同事都在“添加剂制造:从2D到4D印刷”上写道,Ron Naaman(2022年ICS金牌的获得者)审查了他的作品,“ chiral诱发的自旋选择性效应”。我也很高兴为《冰》杂志采访罗恩。