使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
在微级量表上控制pH值可能对研究,医学和行业的应用很有用,因此代表了合成生物学和微流体的宝贵应用。提出的囊泡系统将不同的颜色转化为周围溶液中特定的pH值变化。它可以与两个轻驱动的质子泵细菌紫红质和蓝色的光吸收蛋白淡淡的蛋白质Med12一起使用,它们在脂质膜上以相反的方向定向。计算机控制的测量设备实现了一个反馈循环,以自动调整和维护所选的pH值。可以建立跨越两个单元的pH范围,从而提供时间和pH分辨率。作为一个应用示例,呈pH敏感的酶反应,在浅色控制反应进展的情况下。总而言之,使用工程蛋白质体的浅色控制的pH调节为在微级别的不同情况下(例如合成生物学应用中)打开了新的可能性,以在微层尺度上控制过程。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
apligraf和Dermagraft:对于糖尿病性溃疡,证据表明至少适度的净收益中等确定性。系统评价和卫生技术评估得出的结论是,包括Apligraf(Graftskin)和Dermagraft在内的皮肤替代品的附加疗法可能是标准伤口护理的一种替代方法,可用于治疗下肢的糖尿病性溃疡,从而使患者的较高比例的全部伤口闭合和短伤口更短。使用Apligraf和3项使用Dermagraft的研究得出的一项荟萃分析和系统评价得出结论,皮肤替代品可提高糖尿病足溃疡的愈合率,并导致截肢略少。但是,数据不足以得出有关特定产品有效性或长期结果的结论。对糖尿病足溃疡患者的一项随机对照试验发现,接受标准伤口护理的35例平均时间为57.4天,而接受Apligraf的33例患者的平均时间平均为47.9天。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640071 doi:Biorxiv Preprint
摘要:乳腺癌仍然是一个重要的健康挑战,并且需要新颖的治疗方法。本评论对工程过的T-Cell疗法(E-ACTS)进行了深入分析,这是癌症免疫疗法的创新前沿,重点是它们在乳腺癌中的应用。我们探索嵌合抗原受体(CAR)和T细胞受体(TCR)T细胞疗法的不断发展的景观,突出了它们在靶向乳腺癌方面的潜力和挑战。审查解决了关键障碍,例如靶抗原选择,复杂的乳腺癌肿瘤微环境以及工程T细胞的持久性。我们讨论了克服这些障碍的进步,包括增强T细胞效率的策略。最后,我们对当前该领域的临床试验的全面分析提供了对乳腺癌治疗中电子可能性的未来可能性和方向的见解。
澳大利亚科学家找到了一种有效的新方法来清理世界上最危险的污染物之一的甲基马克里,由于非法挖矿和燃烧煤炭等工业活动,它通常在我们的食品和环境中建立。该发现于2025年2月12日在自然通讯上发表,可能会导致
摘要:免疫系统通常提供防御入侵的致病微生物和任何其他颗粒物污染物的防御。尽管如此,最近有报道说,由于其独特的物理化学特征,纳米材料可以逃避免疫系统并调节免疫学反应。因此,基于纳米材料的免疫成分激活,即中性粒细胞,巨噬细胞和其他效应细胞,可能会诱发炎症并改变免疫反应。在这里,必须区分纳米材料触发的急性和慢性调节以确定人类健康的可能风险。纳米材料的大小,形状,组成,表面电荷和变形性是控制其免疫细胞摄取的因素以及由此产生的免疫反应。在纳米材料表面吸附的分子的外围电晕也会影响其免疫学作用。在这里,我们回顾了靶向免疫调节的当前纳米工程趋势,重点是纳米材料的设计,安全性和潜在毒性。首先,我们描述了触发免疫反应的工程纳米材料的特征。然后,争论了纳米工程颗粒的生物相容性和免疫毒性,因为这些因素会影响应用。最后,讨论了表面修饰,协同方法和仿生学的未来纳米材料发展。关键词:表面工程,免疫调节,生物相容性,免疫毒性,纳米医学
如超越摩尔定律和物联网设备。[2] 在过去的二十年里,人们投入了大量的研究精力来开发大规模生产 2DM 的新方法和策略,旨在实现质量、高通量和低成本之间的最佳平衡。[3] 溶液处理是实现高浓度和高体积 2DM 分散体(也称为“墨水”)的最有效方案;其中,液相剥离是一种有效的策略,可以将块状层状材料转化为分散在合适溶剂中的薄纳米片。[4] 这些墨水可以采用多种方法打印成薄膜,包括喷墨打印、丝网印刷和喷涂,[5] 从而促进 2DM 印刷电子的发展,其中低成本和大面积制造与器件性能同样重要。在这方面,人们对(光)电子学中二维半导体的兴趣日益浓厚,这导致了过渡金属二硫化物(TMD)的巨大成功。它们极其多样的物理化学性质确保了广泛的适用性,并通过使用分子化学方法的特殊功能化策略进一步扩展了其适用性。[6–11] 尽管如此,进展仍然受到结构缺陷的阻碍,这对
炎症性肠病(IBD)是一种慢性疾病,影响了肠道,以免疫介导的炎症为特征。这种疾病以其复发性及其在治疗中面临的挑战而闻名。最近,益生菌已引起人们的注意,作为传统小分子药物和IBD的单克隆抗体化学疗法的有希望的替代方法。益生菌被公认为是一种“活着的”治疗剂,可提供针对性的治疗,具有最小的副作用和生物修饰的灵活性,使其对IBD管理非常有效。这篇全面的评论介绍了工程益生菌材料的最新进步,从基本治疗机制到IBD管理中使用的修改技术。它深入研究了益生菌如何在肠道环境中产生治疗作用,并讨论了增强益生菌功效的各种策略,包括遗传修饰和制剂改善。此外,该评论还解决了基于益生菌的疗法在IBD治疗中的挑战,实际应用条件以及未来的研究方向,从而提供了对其可行性和潜在临床意义的见解。