apligraf和Dermagraft:对于糖尿病性溃疡,证据表明至少适度的净收益中等确定性。系统评价和卫生技术评估得出的结论是,包括Apligraf(Graftskin)和Dermagraft在内的皮肤替代品的附加疗法可能是标准伤口护理的一种替代方法,可用于治疗下肢的糖尿病性溃疡,从而使患者的较高比例的全部伤口闭合和短伤口更短。使用Apligraf和3项使用Dermagraft的研究得出的一项荟萃分析和系统评价得出结论,皮肤替代品可提高糖尿病足溃疡的愈合率,并导致截肢略少。但是,数据不足以得出有关特定产品有效性或长期结果的结论。对糖尿病足溃疡患者的一项随机对照试验发现,接受标准伤口护理的35例平均时间为57.4天,而接受Apligraf的33例患者的平均时间平均为47.9天。
apligraf和Dermagraft:对于糖尿病性溃疡,证据表明至少适度的净收益中等确定性。系统评价和卫生技术评估得出的结论是,包括Apligraf(Graftskin)和Dermagraft在内的皮肤替代品的附加疗法可能是标准伤口护理的一种替代方法,可用于治疗下肢的糖尿病性溃疡,从而使患者的较高比例的全部伤口闭合和短伤口更短。使用Apligraf和3项使用Dermagraft的研究得出的一项荟萃分析和系统评价得出结论,皮肤替代品可提高糖尿病足溃疡的愈合率,并导致截肢略少。但是,数据不足以得出有关特定产品有效性或长期结果的结论。对糖尿病足溃疡患者的一项随机对照试验发现,接受标准伤口护理的35例平均时间为57.4天,而接受Apligraf的33例患者的平均时间平均为47.9天。
摘要:氮化硅 (Si3N4) 是开发低损耗光子集成电路的理想候选材料。然而,标准光纤和 Si3N4 芯片之间的有效光耦合仍然是一项重大挑战。对于垂直光栅耦合器,较低的折射率对比度会导致较弱的光栅强度,从而导致较长的衍射结构,限制了耦合性能。随着混合光子平台的兴起,采用多层光栅排列已成为提高 Si3N4 耦合器性能的一种有前途的策略。在本文中,我们介绍了一种用于带有非晶硅 (α-Si) 覆盖层的 Si3N4 平台的高效表面光栅耦合器的设计。表面光栅完全形成在 α-Si 波导层中,利用亚波长光栅 (SWG) 设计的超材料,可通过单步图案化轻松实现。这不仅为控制光纤-芯片耦合提供了额外的自由度,而且还有助于移植到现有的代工厂制造工艺。使用严格的三维 (3D) 有限差分时域 (FDTD) 模拟,设计了一种超材料工程光栅耦合器,其耦合效率为 − 1.7 dB,工作波长为 1.31 µ m,1 dB 带宽为 31 nm。我们提出的设计为氮化硅集成平台提供了一种开发高效光纤芯片接口的新方法,可用于数据通信和量子光子学等广泛应用。
在1946年对Chargaff and West进行了研究,该研究开放了细胞外囊泡(EV)生物学领域,1990年的几项研究表明,疾病状态中外泌体表达水平改变了。从那时起,对疾病治疗领域中外泌体的研究迅速增长(1-5)。例如,已证明免疫细胞起源的外泌体影响免疫系统的功能(6)。此外,随着外部研究技术的发展,研究人员有能力检测单个外泌体,宣布外泌体研究已经进入了个体外泌体时代(7,8)。外泌体,平均直径约为100纳米,是EV的子集(9)。 几乎所有类型的细胞都会释放外泌体,可以看作是细胞的常规生理活性(10)。 细胞是人体最基本的基础,它们的异常状态通常会导致疾病。 随着研究方法和技术的发展,研究人员发现,除了细胞外,外泌体在疾病的发作和进展中也起着至关重要的作用(9,11,12)。 外泌体通常以低免疫原性,高安全性,高组织穿透性为特征,并且几乎可以循环到所有体腔(13)。 此外,不同细胞分泌的外泌体具有不同的组织选择性(14)。 随着外部研究的加深,工程外泌体在疾病治疗中的巨大潜力,尤其是癌症的治疗。 但是,没有一个人外泌体,平均直径约为100纳米,是EV的子集(9)。几乎所有类型的细胞都会释放外泌体,可以看作是细胞的常规生理活性(10)。细胞是人体最基本的基础,它们的异常状态通常会导致疾病。随着研究方法和技术的发展,研究人员发现,除了细胞外,外泌体在疾病的发作和进展中也起着至关重要的作用(9,11,12)。外泌体通常以低免疫原性,高安全性,高组织穿透性为特征,并且几乎可以循环到所有体腔(13)。此外,不同细胞分泌的外泌体具有不同的组织选择性(14)。随着外部研究的加深,工程外泌体在疾病治疗中的巨大潜力,尤其是癌症的治疗。但是,没有一个人目前,工程外泌体主要用于通过增强靶向,调节基因表达,充当药物载体,改变肿瘤微环境和调节包容体等,来增强疾病的治疗作用。
高级体外模型概括了人心脏的结构组织和功能,这对于准确的疾病建模,更可预测的药物筛查和安全药理学非常需要。传统的3D工程心脏组织(EHT)在流量下缺乏异型细胞的复杂性和培养,而通常缺乏3D构造和准确的收缩读数,微型流体的心脏内片(HOC)模型缺乏。在这项研究中,通过培养人类多能干细胞(HPSC)衍生的心肌细胞(CMS),内皮(ECS)和平滑肌细胞(SMC),与人类心脏小胸针(MICBRONIAID-FORMIATS-INTER-MICTRORORY FOR-ORRORORIATH)一起培养,开发了一种创新和用户友好的HOC模型来克服这些局限性。 (μEHTS)具有CM-EC界面,让人联想到生理毛细管衬里。在流量下培养的μEHT显示出增强的收缩性能和传导速度。 此外,EC层的存在改变了μEHT收缩中的药物反应。 该观察结果表明EC具有潜在的类似屏障的功能,这可能会影响药物对CMS的可用性。 这些具有增加生理复杂性的心脏模型,将为筛选治疗靶标的铺平道路并预测药物效应。μEHT显示出增强的收缩性能和传导速度。此外,EC层的存在改变了μEHT收缩中的药物反应。该观察结果表明EC具有潜在的类似屏障的功能,这可能会影响药物对CMS的可用性。这些具有增加生理复杂性的心脏模型,将为筛选治疗靶标的铺平道路并预测药物效应。
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 3 月 21 日发布。;https://doi.org/10.1101/2021.10.06.463037 doi:bioRxiv 预印本
外泌体是由脂质双层包围并由许多细胞类型释放的小囊泡,由于其能够充当具有治疗潜力的疾病和药剂的能力,因此被广泛分散,并在再生医学领域受到了越来越多的关注。外泌体在细胞之间通过许多生物分子的转移,包括蛋白质,脂质,RNA和其他分子成分,在介导细胞间通信中起着至关重要的作用。蛋白质和核酸向特定细胞的靶向运输具有增强或损害特定生物学功能的潜力。外泌体具有许多应用,可以单独使用或与其他治疗方法结合使用。对这些因素的独特属性和许多功能的检查已成为生物医学研究领域的重要研究领域。此手稿总结了外泌体的起源和特性,包括它们的结构,生物学,物理和化学方面。本文对组织修复和再生医学的最新进展进行了完整的研究,强调了这些方法在即将发生的组织再生尝试中的可能影响。
抗生素治疗会对微生物群产生有害影响并导致抗生素耐药性。为了开发一种针对多种临床相关的大肠杆菌的噬菌体疗法,我们筛选了一个包含 162 种野生型 (WT) 噬菌体文库,确定了 8 种对大肠杆菌具有广泛覆盖度、与细菌表面受体互补结合并能稳定携带插入货物的噬菌体。选定的噬菌体经过尾纤维和 CRISPR-Cas 机制改造,以专门针对大肠杆菌。我们发现,工程噬菌体可以靶向生物膜中的细菌,减少噬菌体耐受性大肠杆菌的出现,并在共培养实验中胜过其祖先 WT 噬菌体。四种最具互补性的噬菌体的组合,称为 SNIPR001,在小鼠模型和小型猪中均具有良好的耐受性,并且比单独的组成部分更好地减少小鼠肠道中的大肠杆菌负荷。 SNIPR001 目前正在临床开发中,旨在选择性杀死大肠杆菌,大肠杆菌可能会导致血液癌症患者出现致命感染。