工程生物材料 (ELM) 是一类新型材料,旨在合成 21 和/或由生物体填充。ELM 有可能降低材料制造中的能源成本,并提供包括自修复和 23 传感在内的新型材料功能。然而,材料制造的能源成本主要来自用于建筑和机器的刚性材料的生产 24。为了大幅减少碳排放,25 ELM 必须能够替代其中一些刚性材料。然而,由活细胞合成的天然材料不够坚硬,无法替代大多数刚性工程材料 27。此外,目前最坚硬的 ELM 中的细胞活力还不足以实现这些材料的潜在可持续性优势。对刚性 ELM 的需求将需要新的方法来增强驻留细胞活力和/或将活细胞与刚性支架相结合 30。在天然材料中,骨骼是一种罕见的刚性材料 31,它由能够保持多年活力的细胞合成和功能化。骨骼有望为克服挑战提供宝贵的经验,以实现用于承重目的的 ELM 所需的活力和 33 机械性能。34
1。放射学系;翻译医学中心;广州纳米生物医学技术研究和开发的主要实验室,用于诊断和治疗以及广东省教育部纳米免疫调节肿瘤微环境的主要实验室;中央实验室,广州医科大学第二附属医院,中国510260,中国。2。武士医学院武士医学院放射学系,中国北哥441000。3。营养部;广东省级食品主要实验室,公共卫生学院,孙子森大学,广州510080,中国。4。中国传统中药分校的Shunde中医医院放射学系,中国528000。 5。 广州市政和广东省分子靶标和临床药理学,NMPA和州呼吸道疾病的国家主要实验室,药学学院和第五家附属医院,近510260,中国的广州医科大学。 6。 病理学系,广州公民大学第二附属医院,中国510260。 7。 微创介入的分裂;中国南部肿瘤学的国家主要实验室;中国广州510060的孙子森大学癌症中心合作创新癌症医学中心。 8。 中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。 9。中国传统中药分校的Shunde中医医院放射学系,中国528000。5。广州市政和广东省分子靶标和临床药理学,NMPA和州呼吸道疾病的国家主要实验室,药学学院和第五家附属医院,近510260,中国的广州医科大学。6。病理学系,广州公民大学第二附属医院,中国510260。7。微创介入的分裂;中国南部肿瘤学的国家主要实验室;中国广州510060的孙子森大学癌症中心合作创新癌症医学中心。8。中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。 9。中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。9。Earle A. Chiles研究所,Providence Cancer Institute,4805 NE Glisan St.,Suite 2n35,Portland,OR 97213,美国。Earle A. Chiles研究所,Providence Cancer Institute,4805 NE Glisan St.,Suite 2n35,Portland,OR 97213,美国。
Laura Díez-Alonso 1,2,3 †, Aïda Falgas 4.5 †, Javier Arroyo-Rodenas 1,2,3 †, Paola A. Romencín 4, Alba Martínez 4, Marina Gómez-Rosel 1,2,3, Belén Blanco 1,2,3,5, Anaïs Jiménez-Reininoso 1,2,3,Andrea Mayado 6,7,7,8,AlbaPérez-Pons 6,7,8,ÓscarAguilar-Sopeña9,10,ÁngelRamírez-Fernánánánandez1,2,3,1,2,3,Alejandrosegura-segura-ututela 1,2,3,loreena pererea pereio 1,2,3,CarmenDomínguez-Alonso 1,2,3,Laura Rubio-Pérez1,2,3,12,Maria Jara 6,7,8,FrancescSolé4,Oana Hangiu 1,2,Oana Hangiu 1,2,Laura Almagro 9,10 Anguita 16,17, Antonio Valeri 18,19, Almudena García-Ortiz 18,19, Paula Río 5,20,21,22, Manel Juan 5,11,23,24,25, Joaquín Martínez-López 5,18,18 Pedro Roda-Navarro 9,10, Beatriz Martín-Antonio 26, Alberto Orfao 6,7,8,PabloMenéndez4,5,7,27,28,Clara Bueno 4,5,7 *,Luisálvarez-Vallina-vallina 1,2,3,12 *
在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。
摘要:肠道失调和病原体病导致微生物和宿主合作代谢物的组成和生物反映改变。细菌进化的主要机制是水平基因转移(HGT),可以通过移动遗传元件(MGE)的交换来获得新特征。引入基因工程的微生物(GEM)可能会破坏肠道室中的统一平衡。目前的目标是:1。揭示了宝石的水平基因转移在改变肠微生物组的景观中所起的作用。扩大这些变化对人类基因组和健康的潜在有害影响。对2000年至2023年8月在PubMed/Medline,Embase和Scielo中发表的文章进行了搜索,使用了适当的网格输入项。宝石的水平基因交换可能会诱发多种人类疾病。新的宝石可以改变肠道或真核细胞居民的长期自然演变。全球监管机构对宝石的安全控制不足以保护公共卫生。的生存能力,生物内在和许多其他方面仅对公共卫生有部分控制和有害后果。重要的是要记住,预防是最具成本效益的策略,而非nocere应该是重点。
使用的指示:True™扩张气囊瓣膜成形术导管用于球囊主动脉瓣膜成形术。使用的禁忌症:true™扩张气囊瓣膜成形术导管禁忌用于<18 mm的环形尺寸的患者。潜在的并发症:经皮易流动瓣膜成形术过程可能导致的并发症包括:·额外干预·对药物或对比培养基的过敏反应·动脉瘤或suedoaneurysm或suedoaneurysm·心律失常·心血管造成的心血管伤害低血压/高血压·炎症·疼痛·疼痛或压痛·肺炎或血胸·败血症/感染(EO)。非养基因。如果打开或损坏无菌障碍,请勿使用。仅使用单身患者。请勿重复使用,重新加工或重新使用。·该设备仅用于一次使用。重复使用该医疗设备的风险具有跨科治疗污染的风险,因为医疗设备(尤其是组件之间长长和小的Lumina,关节和/或缝隙的设备)很难或不可能清洁,一旦具有潜在的热源或微生物污染的人体流体或组织已经与医疗设备接触了不可能的时间。·不要恢复。膨胀的气球直径不应明显大于瓣膜直径。生物材料的残留物可以用金刚元或微生物促进该装置的污染,这可能导致感染并发症。恢复后,由于可能导致感染性并发症的潜在热源或微生物污染,因此无法保证产物的无菌性。清洁,重新处理和/或恢复目前的医疗设备增加了该设备由于对受热和/或机械变化影响的组件的潜在不利影响而导致设备故障的可能性。·在为任何患者选择特定尺寸时,必须仔细考虑导管气球通胀直径。在使用前对瓣膜解剖尺寸进行临床诊断测定至关重要。应考虑成像模态,例如经胸膜超声心动图(TTE),计算机断层扫描(CT),血管造影和/或经食管超声心动图(TEE)。·当导管暴露于血管系统时,应在高质量的荧光镜观察下进行操纵。除非气球完全放气,否则请勿前进或缩回导管。如果在操纵过程中达到了电阻,请在进行前确定电阻的原因。应用过多的
Humbert G,Sciacovelli A,《能源存储杂志》 2023; 64:107132。ge r,[..],Sciacovelli A,应用热工程,2020; 180:115878; Pizzolato,[…],Sciacovelli A,Energy 2020; 203:114797。
摘要:苯乙烯是一种重要的工业化学化学物质。尽管有几项研究报告了微生物苯乙烯的产生,但可以增加批量培养物中产生的苯乙烯量。在这项研究中,使用基因设计的大肠杆菌产生了苯乙烯。首先,我们评估了拟南芥(Atpal)(Atpal)和Brachypodium distachyon(BDPAL)的五种类型的苯丙氨酸氨裂解酶(PAL),以产生反式甲酸(CIN),一种苯乙烯前体。ATPAL2-表达大肠杆菌的CIN大约700 mg/L,我们发现BDPAL可以将CIN转换为苯乙烯。为评估苯乙烯的产生,我们构建了一个大肠杆菌菌株,该菌株从酿酒酵母中表达ATPAL2和阿魏酸脱羧酶。在含油醇的双相培养后,葡萄糖的苯乙烯产生和产量分别为3.1 g/L和26.7%(mol/mol),据我们所知,这是分批种植中获得的最高价值。因此,该菌株可以应用于苯乙烯的大型工业生产。
摘要:一种通常称为心脏病发作的心肌梗塞(MI)导致心脏中心肌细胞(CMS)死亡。组织工程为MI治疗提供了有希望的策略,但是人类工程心脏组织(HECT)的成熟仍然需要改善。导电聚合物和纳米材料已掺入细胞外基质中,以增强心脏细胞之间的机械和电耦合。在这里,我们报告了一种简单的方法,将金纳米棒(GNRS)掺入纤维蛋白水凝胶中以形成一个GNR-纤维蛋白基质,该基质用作形成悬浮在两个柔性柱之间的3D Hect构建体的细胞外基质的主要组成部分。用GNR-纤维蛋白水凝胶制成的高h表现出成熟的标志物,例如较高的抽搐力,同步跳动活动,肌节成熟和比对,T型管网络的开发以及钙处理的改进。最重要的是,GNR小量可以在9个月内生存。我们设想带有GNR的HECT具有恢复梗塞心脏功能的潜力。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 1 月 26 日发布。;https://doi.org/10.1101/2024.01.26.577312 doi:bioRxiv 预印本