运营商可以对我们的 EVM 装置进行编程,以便在正常营运航班的选定阶段获取平衡数据(振动幅度和相位)。该装置计算最佳平衡调整,并向维护技术人员提供在特定位置更改重量的说明。计算可靠,在正常情况下可减少振动。通常不需要额外的地面运行验证。
当 VP-CKY 机组人员首次联系开曼进近管制时,空中交通管制员 (ATCO) 报告称机场有小到中雨,能见度为 2 海里。他还报告称,有阵雨从东南偏东方向接近机场,并向西北偏北移动。VP-CKY 获准通过 ATUVI 3 前往 FAF 并下降至海拔 1,500 英尺。22 时 38 分,当机组人员报告其在 ATUVI 的位置并下降至飞行高度 (FL) 130 时,ATCO(当时在机场 ATC 塔的目视控制室)报告称,最后进近的能见度现在小于 0.5 海里。指挥官向空中交通管制报告说,他在飞机的气象雷达上看到一道“积雨墙”,“一直延伸到大开曼岛和沃尔岛”。开曼群岛国家气象局后来提供了一张拍摄于 22:30 的图像,显示了指挥官提到的阵雨带。图 2 中的黄色、琥珀色和红色表示降水量不断增加。
朋友们,轮到你们被提及了。我很幸运地说有很多。 U 一年级的朋友(Marcelo、Coty、Pato、Rupa、Dani、Manu、Maxi 和 Diego),geo 朋友(Mendo、Pilar、Negra、Jasson、Jipi、Tania、Mati、Fran...。 )、机械师(Javi、Carpa、Sara、Pablo、Rafa、Yani、Matheus、Castro、Pancho、Chopan、Tente、Mrs. Silvia、Carlitos、Fran,...),我在项目中遇到的人风尘和大号,他们从青春期开始就一直在那里(Lucho、Tatan、Violeta、'Chiky'、Diego、Magda、Gastón 和 Joaquin)。昆西·琼斯博士说,只有成为一个好人,才能成为一名优秀的音乐家。我找到了原因并将其扩展到任何职业。亲爱的朋友们,你们让我成为一个更好的人。
1. 序言 20 世纪上半叶,高输出飞机活塞发动机的发展代表了机械工程领域的巅峰。没有任何一种机械装置像那个时期一样,推动了其各个学科的发展;此后也没有任何一种机械装置能像那个时期一样,推动了其各个学科的发展。在动力飞行时代初期,活塞发动机无法胜任这项任务,需要付出巨大的开发努力才能满足越来越大、越来越快的飞机的需求。在其发展过程中,两次世界大战的巧合大大增加了这种努力,但也意味着政府为发动机开发的各个方面提供了巨大的支持,从而推动了机械工程领域大多数学科的发展。这些进步是发动机公司、政府机构和大学开展工作的成果。我自己的机械工程师生涯来得太晚,没有专业涉足飞机活塞发动机,但我几乎只参与了多种类型的发动机,并不局限于某一特定学科。我认为我早年在父亲管理的小型机场接触飞机的经历,以及对驻扎在附近、配备六台二十八缸发动机的巨型战略空军司令部轰炸机的密切观察,对我后来对这些发动机的兴趣产生了一定影响,但最主要的催化剂是与某些 p
GTF 推进系统的独特之处在于,它在风扇和低压轴之间配备了一个减速齿轮箱,驱动风扇的低压压缩机和低压涡轮就安装在该齿轮箱上。齿轮箱使大直径的风扇旋转得更慢,同时使低压压缩机和涡轮旋转得更快。
以维护、修理和大修 (MRO) 的形式对商用飞机燃气涡轮发动机进行维护是现代商用飞机系统生命周期中的主要活动。一家典型航空公司的维护成本中约有 40% 来自发动机 MRO。因此,MRO 行业一直在寻找机会降低成本,使航空公司能够以可承受的价格长期维持飞机。当前的 MRO 决策支持工具侧重于发动机状态监测和故障诊断系统,现有文献大多侧重于开发这些系统的算法。然而,很少有研究人员提出如何设计一套更广泛的基于计算机的决策支持工具来满足发动机 MRO 社区的各种其他认知需求。除了发动机状态监测和故障诊断外,还可以在故障预测、维护规划、工作范围生成和配置管理等领域找到其他认知需求。
- První brnìnská strojírna Velká Bíteš, a.s., PBS, - Centre de Recherche en Aéronautique, ASBL, CENAERO, - Technische Universität München, Institute of Energy Systems, IES, - Swedish Defence Research Agency, FOI, - Université de Liège, ULg,
生物模型存储库包含来自已发表文献的1000多个手动策划的机械模型,其中大多数是在系统生物学标记语言(SBML)中编码的。这个基于社区的标准正式指定了每个模型,但没有描述运行模拟的计算实验条件。因此,仅使用SBML模型复制任何给定的数字或产生的任何给定数字或产生。模拟实验描述标记语言(SED-ML)提供了一个解决方案:一种准确指定如何运行与特定图形或结果相对应的特定实验的标准方法。生物模型是在SED-ML之前数年建立的,并且在内容和接受方面,这两个系统都随着时间的流逝而发展。因此,生物模型中只有大约一半的条目包含SED-ML文件,这些文件反映了当时可用的SED-ML版本。此外,几乎所有这些SED-ML文件至少都有一个小错误,使它们无效。为了使这些模型及其结果更可重复,我们在此处报告了工作更新,纠正和提供新的SED-ML文件,以针对生物模型中的1055个策划的机械模型提供新的SED-ML文件。此外,由于SED-ML是无关实现的,因此可以用于验证,证明在多个仿真引擎之间成立的结果。在这里,我们使用包装器体系结构来解释SED-ML,并报告五个基于不同ODE的生物仿真引擎的验证结果。我们与SED-ML和BioModels Collection的合作旨在通过使它们更可重现和可信来改善这些模型的实用性。
背景 这项提议活动是 ET-215(军用飞机发动机的热和环境屏障涂层)的主要成果,它源自 AVT-250 第 4 章的发现和结论。AVT-250 专注于飞机燃气涡轮发动机的环境颗粒 (EP) 异物损坏 (FOD)。AVT-250 技术团队的结论和建议使增强的发动机设计和测试方法能够减轻 EP-FOD 的影响,以及更强大的工具、模型和其他产品,为在 EP 环境中飞行建立最佳实践。
对于适用于柴油燃烧的生物燃料,主要问题与润滑剂被燃料稀释有关,燃料容易生物降解,并且对某些材料具有腐蚀性。对于乙醇,由于润滑剂粘度降低和润滑剂中含水量增加,磨损情况恶化。此外,乙醇会与润滑剂发生反应。这会增加润滑剂的酸性和某些润滑剂添加剂的分解。除此之外,乙醇中水含量的增加(这种情况经常发生)会增加发动机腐蚀。对于甲醇,会出现与乙醇加水相同的问题。中国的经验总结了更具体的材料问题,这些总结在表 6 中。此外,甲酸的形成对抗磨性能有负面影响。甲醇、润滑剂和水在低温下会形成乳液,这会导致润滑剂失效。润滑剂需要提高碱值和抗氧化性能才能使发动机正常工作。最后,火花塞会出现点蚀和烧蚀。据报道,氢气会导致表面脆化、燃油喷射器故障(由于润滑性差)并阻止表面保护氧化物的形成。此外,氢气会以多种不同的方式降低润滑剂添加剂含量,并可能导致润滑剂乳化。最后,气缸套上的水凝结会导致过度磨损。氨是一种用于内燃机的相对较新的燃料。因此,需要更多的经验来完全描述燃料对磨损的影响。然而,据报道,它对铜合金有腐蚀作用,预计其他材料也是如此。据报道,胺会导致润滑剂粘度增加,排气中高水含量预计会因气缸套上的水凝结而导致过度磨损。在 21 世纪初期,DME 被视为一种替代柴油的潜在燃料。DME 的问题在于它是一种极好的溶剂,可能会损坏大多数材料。然而,由于 2000 年代初人们对应用 DME 的极大兴趣,人们已经发现了耐 DME 的材料。DME 的低润滑性导致燃油喷射系统表面磨损。人们已经开发出添加剂来缓解这一问题。