摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理
本研究的重点是通过集成区块链技术来提高电子商务供应链的透明度和信任。这在区块链中非常重要,因为有必要保护,记录,验证,验证和共享多个各方的数据,以确保透明度和信任。为了实现这一目标,我们介绍了称为基于区块链的NSGA III-GKM的先进组合技术。遗传K-均值聚类(GKM)和非主导的分类遗传算法(NSGA-III)是两种高级算法,结合了以新颖方式使用的高级区块链技术来实现这一目标。区块链系统会产生大量的复杂数据,因此确定有意义的模式和趋势很重要。NSGA III和GKM解决了区块链的这些问题。本研究使用NSGA III来解决多个目标的问题,例如提高信任,透明度和运输成本降低。通过使用NSGA,有效地确定了最佳解决方案,可以平衡这些具有挑战性的目标。同时,GKM通过微调分类为类似群集的数据点来改善分组过程。这有助于确定基于区块链的供应链数据中的特定趋势。通过结合这些方法,我们能够改善电子商务供应链中的趋势和行动机制。这些合并的方法协助公司确定有效的供应链策略,这有助于最大程度地降低风险,并能够调整不断变化的区块链系统。来自电子商务供应链的现实世界数据用于测试该方法的功效。根据调查结果,成功地展示了各种目标之间的平衡,并提供了改善区块链驱动的供应链网络的建议。总体而言,通过将区块链与NSGA III和GKM相结合,它不仅可以确保安全性和信任,而且还利用高级分析来提高透明度和运营效率。因此,它将帮助组织实现弹性有效的供应链管理。
已知由形成 J 聚集体的有机染料组成的超分子组装体表现出窄带光致发光,半峰全宽约为 ≈ 9 nm (260 cm − 1 )。然而,这些高色纯度发射体的应用受到菁 J 聚集体相当低的光致发光量子产率的阻碍,即使在溶液中形成也是如此。本文证明了菁 J 聚集体在室温下在水和烷基胺的混合溶液中可以达到高一个数量级的光致发光量子产率(从 5% 增加到 60%)。通过时间分辨的光致发光研究,显示了由于非辐射过程的抑制导致激子寿命的增加。小角度中子散射研究表明了这种高发射性 J 聚集体的形成必要条件:存在用于 J 聚集体组装的尖锐水/胺界面以及纳米级水和胺域共存以分别限制 J 聚集体尺寸和溶解单体。
神经网络使最先进的方法能够在目标检测等计算机视觉任务上取得令人难以置信的效果。然而,这种成功很大程度上依赖于昂贵的计算资源,这阻碍了拥有廉价设备的人们欣赏先进的技术。在本文中,我们提出了跨阶段部分网络(CSPNet)来从网络架构的角度缓解以前的工作需要大量推理计算的问题。我们将问题归因于网络优化中的重复梯度信息。所提出的网络通过整合网络阶段开始和结束的特征图来尊重梯度的变化,在我们的实验中,在 ImageNet 数据集上以相同甚至更高的精度将计算量减少了 20%,并且在 MS COCO 目标检测数据集上的 AP 50 方面明显优于最先进的方法。 CSP-Net 易于实现且足够通用,可以应对基于 ResNet、ResNeXt 和 DenseNet 的架构。
摘要迷幻的psilocybin既有承诺作为精神疾病的治疗,又是改善健康个体幸福感的方法。在某些司法管辖区(例如,俄勒冈州,美国),psilocybin用于这两个目的的使用是或很快就会被允许使用,但对这一转变的公众态度被研究了。我们要求795个美国美国人的全国代表性样本评估psilocybin使用的道德状态,以适当的许可环境,以治疗精神病疾病或增强福祉。在两种情况下,参与者表现出强烈的两党支持,将个人的决定评为道德上的积极。这些结果可以为有效的psilocybin使用而有效的政策制定决策,鉴于在创新的调节模型的背景下引起的强大公众态度。我们没有探索对psilocybin在无监督或无许可的社区或社会环境中使用的态度。
跨视图图像地理位置定位旨在通过用GPS标记的卫星图像补丁绘制当前的街道视图图像来确定户外机器人的位置。最近的作品在识别卫星贴片中达到了显着的准确性,该卫星贴片在机器人所在,其中将中央像素在匹配的卫星贴片中用作机器人粗糙位置估计。这项工作着重于机器人在已知的卫星贴片中的细粒度定位。现有的细颗粒定位工作利用相关操作来获得卫星图像本地描述符和街道视图全局描述符之间的相似性。基于衬里匹配的相关操作简化了两个视图之间的相互作用过程,从而导致距离误差很大并影响模型的概括。为了解决这个问题,我们设计了一个具有自我注意力和跨注意层的跨视图功能fu-sion网络,以取代相关操作。此外,我们将分类和回归预测结合在一起,以进一步降低位置距离误差。实验表明,我们的新型网络体系结构的表现优于最先进的,可以在看不见的地区更好的概括能力。具体而言,我们的方法在同一区域和在活力基准的同一区域和看不见的区域中分别将中位定位距离误差降低了43%和50%。
本研究调查了生成人工智能(Genai)对建筑教育中数字素养发展和整体能力的影响。研究设计着重于应用Genai工具,例如Chatgpt,Midjourney,Bricscad Bim和VR/AR软件,及其对建筑学生的整体能力的影响。本文使用了一种混合研究方法,该方法结合了建筑学生在住宅重新审视项目中的进步案例研究,使用Midjourney,Bricscad BIM和VR/AR软件,以及对350个在2023-2023-2024-2024-2024校学年的大陆大学和香港的两名知名大学的在线问卷调查。这种方法旨在加深对Genai对整体能力框架内的概念创造力,主动性,自我管理和压力承受能力的影响。研究结果表明,建筑专业的学生在设计概念阶段经常使用Genai工具,这表明他们与特定的教学法中的研究和概念性创造力相关。此外,这些发现揭示了频繁的Genai工具使用情况之间的潜在相关性,时间管理的改善以及建筑专业的焦虑症减少。结果增强了对建筑教育中数字技术的理解,同时为未来的Genai实施提供了宝贵的见解。这项研究强调了融合Genai的潜在好处,强调了它们在培养创造力,有效的时间管理和压力耐受性中的作用。
中东呼吸道综合征冠状病毒(MERS-COV)感染会导致人类致命的肺部炎症性疾病。相反,骆驼和蝙蝠是主要的储层宿主,耐受的MERS-COV复制而不患有临床疾病。在这里,我们从MERS-COV康复的骆驼中分离了宫颈淋巴结(LN)细胞,并用两种不同的病毒菌株(进化枝B和C)脉冲它们。病毒复制,但安装了细胞免疫反应。让人联想的Th1反应(IFN-G,IL-2,IL-12),并伴随着抗病毒反应的明显且短暂的峰值(I型IFNS,IFNS,IFN-L 3,ISGS,ISGS,PRRS和TFS)。重要的是,炎症细胞因子(TNF-A,IL-1 B,IL-6,IL-8)的表达或膨胀成分(NLRP3,CASP1,Pycard)的表达被抑制。讨论了IFN-L 3在骆驼物种中对平衡量弹性过程以及桥接先天和适应性免疫反应的作用。我们的发现阐明了有关在没有临床疾病的情况下如何控制MERS-COV的关键机制。
● 提高 BDNF 水平的最佳持续时间:长时间(约 40 分钟)中强度至高强度运动(至少达到最大心率的 65%)对年轻健康男性的 BDNF 水平影响最大,比运动前高出近三分之一。然而,在大多数研究中,30 分钟的运动相对常见,似乎足以引起持续(24 小时)的记忆力改善。● 短期飙升,长期影响:运动后 BDNF 水平的上升是短暂的,通常在运动后不到一小时。然而,长期影响是相当大的,动物研究表明,运动会增加大脑中的神经发生。 ● 高强度骑行比长时间骑行更能增加 BDNF:六分钟高强度骑行间隔(6 个 40 秒间隔,100% VO2 峰值)使循环 BDNF 的每个指标比长时间低强度骑行(90 分钟,25% VO2 峰值)增加四到五倍。血浆衍生 BDNF 增加四到五倍与血浆乳酸增加六倍相关。● 增强老年人的血浆 BDNF 和脑容量:参加为期六个月的舞蹈课程后,老年人的脑容量在对记忆至关重要的区域增加,血浆 BDNF 水平显着上升。