摘要 在不适当的洗涤和干燥条件下,浴巾容易滋生细菌,对人体健康构成威胁。本研究调查了大专学生使用浴巾的细菌污染情况以及与浴巾使用相关的洗涤和干燥习惯。通过培养法,从大专学生拥有的 50 条浴巾的标准面积(0.96cm 2 )上取样拭子,分离出大肠菌群(23,46%),包括大肠杆菌(18,36%)。男学生毛巾上的大肠菌群污染率(15,60%)高于女学生(8,32%)[χ²(1) = 3.87,p = 0.049]。男性(13,52%)的大肠杆菌污染也比女性(5,20%)更常见[χ²(1) = 5.44,p = 0.019]。男用毛巾中大肠菌群的平均菌落计数为 29.68,女用毛巾中为 21.32(U = 417,p = 0.027),男用毛巾中大肠杆菌的平均菌落计数为 30.16,女用毛巾中为 20.84(U = 429,p = 0.008)。生化试验鉴定出 7 个属的细菌、4 个大肠菌群:大肠杆菌、粘质沙雷氏菌、弗氏柠檬酸杆菌、肠杆菌属和 3 个非大肠菌群:霍乱弧菌、伤寒沙门氏菌和产碱杆菌属。7 名男学生(28%)和 16 名女学生(72%)报告称他们在使用毛巾两周后会清洗毛巾。使用一至两个月后清洗毛巾的男生(16 名,64%)多于女生(8 名,32%)。学生毛巾的细菌污染引起了人们对接触潜在有害细菌风险的担忧,并呼吁学生采取适当的毛巾卫生习惯。
摘要:Dongcai以其美味的avor和营养价值而被爱。Dongcai中的微生物在其平坦,质量和安全性中起着至关重要的作用,而Dongcai的微生物群落在各个地区之间差异很大。然而,尚不清楚哪些主要的微生物在不同的传统dongcai以及它们如何影响其avor中。这项研究的目的是探索三个代表性的中国地区(Tianjin,Sichuan和Guangzhou)中传统发酵Dongcai的微生物多样性,并进一步评估其微生物功能。与最高的四川发酵的Dongcai相比,广东发酵的Dongcai的微生物多样性的多样性最低。发酵的Dongcai的主要属的分布因地区而异,但是肉欲,葡萄球菌,假单胞菌,鞘氨拟补膜,鞘氨虫,Burkholderia-Caballeronia-Paraburkholderia和Rhodococcus是普通的主要属。此外,嗜嗜血素细菌(HAB,即halomonas bacillus,virgibacillus等)和乳酸细菌(实验室,即魏森氏菌和乳杆菌)也很丰富。,Burkholderia- Caballeronia-Paraburkholderia,Rhodococcus,Sphingomonas,Ralstonia和Chromohalobacter在Sichuan样品中占主导地位。在天津样品中,乳酸杆菌,魏森氏菌,virgibacillus,肠杆菌,克雷伯氏菌和假单胞菌是最丰富的。微生物代谢功能的预测表明,碳水化合物,氨基酸,聚酮化合物,脂质和其他二次代谢物可用于生物合成。此外,这三种类型的dongcai的不同型号可能是由于以下事实:HAB和实验室的丰度与重要代谢物(例如盐,酸,氨基氮和糖)的量显着正相关。这些结果有助于我们理解不同类型的Dongcai和它们所包含的微生物之间的联系,并将为微生物群落与半发作泡菜中的微生物群落之间的关系提供参考。
背景微生物发展了复杂的系统以响应环境信号。特定分子的梯度改变了微生物行为和环境中的分布。微电位工具现在采用基于自动图像的方法来分析在小时尺度上受控环境中微生物物种的瞬时分布和运动行为,并在某种程度上模仿了宏观条件。此类技术已被采用用于主要针对单个物种的研究。现在必须开发出类似的多功能方法,以针对微生物群落和环境之间的多重和复杂相互作用的特征进行开发。结果,我们为响应环境驱动器的合成混合微生物悬浮液的物种特异性行为提供了一种全面的分步方法。通过使用自动图像分析方法来解决可访问的微流体设备,我们评估了三种形态学上不同的胎尿种物种(phytophthora parasitica,vorticella sicella microstoma,肠杆菌,肠杆菌)对potassium梯度驱动程序的行为反应。使用Trackmate插件算法,我们进行了形态计量学,然后进行运动分析以表征每个微型物种对驱动器的反应。这种方法使我们能够确认这三个物种的不同形状特征,并同时表征了它们对驾驶员的特殊运动适应以及它们的共同交互动力学。结论获得的结果证明了该方法在高空间和时间尺度上筛选混合物种悬架动力学的可行性。通过增加悬浮液的复杂性,可以集成这种方法以支持常规的OMICS方法,从而有助于表征主要驱动因素在微生物群体 - 宿主 - 环境接口之间的运行方式。在目前的进步中,该方法可以整合筛选策略,例如,用于生物防治剂评估,启发基于微栖息地的共殖化的可能的有益性 - 病原相互作用。
兽医诊所中医院感染预防的重要元素是监测环境对象,空气,设备和仪器。为了确定将生病动物作为兽医诊所中医院感染病原体传播的盒子的作用,我们研究了储藏室和生物溶质表面的微生物群。为此,我们从塑料和钢盒,早晨卫生前的空气样品表面收集了冲洗,在用水和洗涤剂清洁和擦拭表面后以及消毒后。从盒子的表面上持有动物,我们主要是分离的葡萄球菌属,链球菌属的细菌,微球菌属,spp。,corynebacterium spp。和芽孢杆菌属。革兰氏阴性物种,我们发现的是spp。的细菌。和肠道属。湿清洁和消毒塑料盒后,我们检测到葡萄球菌属的种类。和肠球菌属。在5.4%的样品中,微球菌属。为8.1%和杆菌属。为2.7%。 肠杆菌属的革兰氏阴性细菌。 在2.7%的样品中发现。 同时,在不锈钢盒表面上消毒后发现细菌的样品中的微生物数量比从塑料盒的表面低2.0倍。 消毒后,空气菌群的基础包括微核属,corynebacterium spp。 和葡萄球菌属,可以进行空中传播。为2.7%。肠杆菌属的革兰氏阴性细菌。在2.7%的样品中发现。同时,在不锈钢盒表面上消毒后发现细菌的样品中的微生物数量比从塑料盒的表面低2.0倍。消毒后,空气菌群的基础包括微核属,corynebacterium spp。和葡萄球菌属,可以进行空中传播。我们确定了盒子表面的湿消毒后,空气中的微生物数量减少,平均相当于3.7倍,与消毒前相比。消毒后从盒子中分离出的细菌(微球菌属,葡萄球菌属)形成高度致密的生物膜,这可能确保微生物细胞的存活,从而使盒子成为医生感染的可能来源。
氨苄西林* 类别:β-内酰胺 概述 氨苄西林,俗称广谱青霉素,是一种氨基青霉素,是一类半合成的 β-内酰胺,专门用于对抗革兰氏阴性菌和革兰氏阳性菌。氨基青霉素是通过将青霉素与氨基或侧链连接而生成的。添加侧链会显著改变药物对某些细菌的活性。最初,这些抗菌药物对奇异变形杆菌、大肠杆菌、志贺氏菌、沙门氏菌、嗜血杆菌和奈瑟菌有效。然而由于易感性的变化,氨苄西林不再是治疗这些菌感染(如大肠杆菌尿路感染)的首选药物,除非培养和药敏结果表明易感。氨苄西林的作用机制是通过附着于青霉素结合蛋白 (PBP) 来干扰细胞壁合成,抑制细胞壁肽聚糖合成和使自溶酶抑制剂失活。耐药性 氨苄西林通常也被 β-内酰胺酶灭活(有关获得对 β-内酰胺的耐药性的信息,请参阅青霉素部分。)。近年来,屎肠球菌和肺炎链球菌开始通过突变表现出低亲和力 PBP,这是对氨基青霉素的耐药机制。有效性 氨苄西林和阿莫西林具有相同的活性谱,尽管阿莫西林的特点是生物利用度更高。对氨苄西林和阿莫西林普遍敏感的菌属包括葡萄球菌、链球菌、棒状杆菌、梭状芽孢杆菌、大肠杆菌、克雷伯氏菌、志贺氏菌、沙门氏菌、变形杆菌和巴氏杆菌,尽管其中许多细菌已获得耐药性。氨苄西林通常用于治疗革兰氏阴性肠道细菌引起的泌尿道感染。该药物还用于治疗呼吸道感染。此外,氨苄西林对 B 组链球菌均有效,但对肠杆菌、流感嗜血杆菌、假单胞菌和吲哚阳性变形杆菌感染无效。有关体液和脑脊液吸收的解释,请参阅青霉素部分。 *可根据要求提供参考资料。致电路易斯安那州卫生与医院部公共卫生办公室传染病流行病学科 (504-219-4563)
抗生素耐药性大肠杆菌是导致社区获得性和院内感染的主要病原体之一,发病率和死亡率较高 ( Hu et al., 2022 )。它们被认为是泌尿道感染 (UTI)、菌血症和腹腔内感染 (IAI) 的主要原因之一 ( Balasubramanian et al., 2023 )。大肠杆菌具有获得抗生素耐药基因 (ARG) 的能力,例如 bla CTX-M-15 超广谱 b -内酰胺酶 (ESBL),并迅速在整个社区传播它们 ( Gonza ́ lez et al., 2020 )。与其他产碳青霉烯酶的肠杆菌(如肺炎克雷伯菌和阴沟肠杆菌复合体)相比,产碳青霉烯酶大肠杆菌 (CP-Eco) 在临床环境中分离的频率并不高,但尤其令人担忧。这是因为它们的患病率正在上升(Cañada-Garc ı ́ a 等人,2022 年),人们担心它们会以类似于 ESBLs 的方式在社区中传播碳青霉烯酶基因(Gonza ́ lez 等人,2020 年)。此外,这些分离株通常对其他几种抗生素具有耐药性,因此难以治疗相关感染(Boutzoukas 等人,2023 年)。所有主要的碳青霉烯酶家族均已在 CP-Eco 中检测到 (Grundmann 等人,2017 年),此外还有多种对临床结果产生负面影响的毒力决定因素 (C ̌ urova ́ 等人,2020 年)。所有这些促使世界卫生组织宣布 CP-Eco 是一个关键的优先问题 (Tacconelli 等人,2018 年)。在全球范围内,抗生素耐药性大肠杆菌在中高收入国家医院内感染的发生率最高,每年造成 300 万至 2500 万人感染 (Balasubramanian 等人,2023 年)。在欧洲,2015 年 CP-Eco 引起的感染人数中位数为 2,619 人,死亡人数中位数为 141 人 (Cassini 等人,2019 年)。在西班牙,CP-Eco 的发病率已从 2013 年的孤立病例( Oteo 等人,2015 年)发展到 2019 年在西班牙 10 个不同的省份中被发现( Cañada-Garc ı ́ a 等人,2022 年)。
背景:糖尿病在全球范围内日益严重。管理不良的糖尿病可能导致糖尿病足溃疡(DFU),这可能成为慢性感染的来源,称为糖尿病足感染。乌干达糖尿病的日益趋势表明,糖尿病足溃疡的潜力可能最终被感染,并且随之而来的是对糖尿病患者生活质量的影响。本综述评估了乌干达DFU的微生物多样性,旨在指导治疗和识别研究差距。摘要的主体:我们在乌干达进行了PubMed,Scopus和Embase搜索了在乌干达进行的研究,这些研究报告了从糖尿病足溃疡中分离出微生物的研究。遵循用于系统评价和荟萃分析(PRISMA)的首选报告项目,我们包括了两项合格的研究,这些研究报告了使用拭子样品和常规培养方法报道了122种细菌分离的细菌。重要的分离株包括世界卫生组织的优先病原体,包括:肠杆菌,金黄色葡萄球菌,肺炎克雷伯氏菌和肺炎杆菌。耐甲氧西林金黄色葡萄球菌(MRSA)占葡萄球菌种的33.3%,所有细菌分离株的26%,而长期谱β-内酰胺酶产生埃斯切里希菌大肠杆菌和klebsiella specie占总体微生物隔离的14.29%。大多数细菌表现出对丙霉素,万古霉素,环丙沙星和克林霉素的敏感性,但注意到对共瑞唑唑和氨苄西林的耐药性。关键字:糖尿病足溃疡,脚感染,乌干达,伤口细菌,脚并发症简短的结论:我们得出结论,乌干达DFU的微生物学数据很少;但是,该国DFU的生物负担与世界其他地区的生物负担相似,MRSA对抗生素疗法构成了挑战。因此,继续使用拭子样品以及常规培养和灵敏度方法可能会限制其他重要分离物的隔离,鉴定和表现。我们建议对细菌分离株进行表征,以更好地了解其遗传构成,并制定用于管理糖尿病足感染的国家指南。
古巴为实现农业可持续发展所做的努力包括大规模使用生物制剂,这产生了巨大的经济、生态和社会影响。甘蔗是我国主要农作物之一,在世界范围内具有重要的经济和生态意义。本研究证明了不同碳源和氮源对 5 种甘蔗内生菌株生长的影响,其中 3 种为固氮葡萄糖醋杆菌,1 种为地衣芽孢杆菌,1 种为成团肠杆菌。同样,研究了五个品种的汁液以及不同浓度的植物激素 3-吲哚乙酸 (IAA) 和赤霉酸 (GA) 对生长的影响。结果表明,在LGI培养基中添加天冬酰胺和硫酸铵作为氮源,能够促进所研究的内生细菌更好地生长。添加甘蔗汁的LGI培养基显著有利于(p≤0.05)内生微生物的生长,并且果汁的品种来源与菌株之间没有直接关系。另一方面,低浓度的植物激素有利于生长,而当培养基中存在高浓度的植物激素时则不然。有必要研究所有能够影响植物与内生菌之间相互作用的因素,以发挥它们作为植物生长促进剂的潜力。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
与有益的微生物的共生物是众多昆虫进化枝的进化创新来源(Moran,2007; Douglas,2015)。甲虫代表最特异的昆虫秩序鞘翅目,依赖于共生的多种适应性(Biedermann and Vega,2020; Salem and Kaltenpoth,2022)。从升级草食分类群的营养生理学(Biedermann和Taborsky,2011; Vigneron等,2014; Ceja-Navarro等,2015; Anbutsu等,2017; Anbutsu等,2017; 2017; Hirota et al。捕食者和病原体的拮抗威胁(Piel,2002;Flórez等,2017; Berasategui等,2022),微生物共生是甲虫进化成功的关键特征。该研究主题旨在阐明甲虫 - 微生物相互作用的多样性和功能方面,跨越了生命的鞘翅目树。值得注意的是,我们的目的是强调分子和分析进步在促进这些伙伴关系如何维持和传播的研究中的作用,它们对它们对甲虫代谢和生理学的影响,以及最终对生态相互作用的影响以及啤酒如何适应其环境。该研究主题吸引了研究细菌共生物多样性,定殖,定位和传播的文章。这些对几个分类单元的一般肠道微生物组的特征调查,包括木制甲虫甲虫Agrilus Mali(Buprestidae)(Bozorov等人)。甲虫拥有一个稳定的细菌群落,但似乎缺乏持续的真菌。)。)。)。在阐明肠道细菌群落是否积极排斥植物相关的真菌时,作者采用了几种分析技术来突出细菌产生的化合物的抑制作用。事先暴露于病原体也可以塑造与甲虫相关的细菌群落,如我们的红色甲虫Tribolium castaneum(Tenebrionidae)所示,并突出显示了寄主免疫系统与居民微生物组成员之间的相互作用(Korša等人(Korša等)诸如瓢虫甲虫和harmonia axyridis(Coccinellidae)等昆虫类似地可以容纳各种各样的细菌伴侣,包括葡萄球菌,肠杆菌,肠肠杆菌,谷氨酰胺和腺苷(Du等人(Du等)但是,在整个宿主的整个发展周期中,这个社区有多可变?这些分类单元在成年人和幼虫之间的丰度差异很大,这表明甲虫宿主的特定阶段作用(Du等人