H2S + K/A 可能的生物 变形杆菌、爱德华氏菌、沙门氏菌、弗氏柠檬酸杆菌 你对这些知识了解多少? 2-4 进行并解释吲哚、MR-VP、柠檬酸盐、尿素酶、运动性和蔗糖发酵试验。陈述这些试验的目的和原理,并根据结果识别肠杆菌科的成员。描述细菌和病毒的繁殖和增殖方式。利用无菌技术安全处理微生物。应用各种实验室技术识别微生物的类型。识别主要微生物群的结构特征,比较原核细胞和真核细胞,对比各种微生物群的生理和生物化学。培养基:蔗糖发酵液、胰蛋白胨肉汤、MR-VP 肉汤、柠檬酸盐斜面、尿素斜面、运动琼脂。设备:接种线和接种环、原种培养物(产气克雷伯菌、大肠杆菌、奇异变形杆菌、肺炎克雷伯菌)。试剂:Kovac 试剂、甲基红、Barritt 试剂 A 和 B。肠杆菌科的革兰氏阴性杆菌在临床微生物实验室中很常见。这些细菌通常被称为“肠道菌”,是正常肠道微生物群的一部分。由于它们具有相似的革兰氏染色结果和细胞形态,因此需要进行生化测试以进行识别。编码在细菌基因组中的生化酶为每种菌种形成独特的“指纹”。从历史上看,IMViC 测试用于识别肠道菌。该首字母缩略词代表吲哚、甲基红、Voges-Proskauer 和柠檬酸盐测试。大肠杆菌曾被用作食物和水源中粪便污染的指标。虽然肠杆菌与大肠杆菌相似,但它在土壤和草丛中广泛存在,因此它是一种不太可靠的指标。大肠杆菌、克雷伯氏菌、肠杆菌和变形杆菌通常是正常肠道微生物群的一部分,但在不同情况下会导致疾病。真正的肠道病原体包括沙门氏菌,它因“食物中毒”而导致伤寒和胃肠炎,以及志贺氏菌,它因“食物中毒”而导致细菌性痢疾。市面上有 Enterotube 和 API20E 等商业试剂盒系统可用于识别肠杆菌科。此练习需要微型细菌分析练习小组工作。小组中的每个人都将使用一种彩色点培养物。有四种蔗糖发酵液测试可供选择。1. 获取蔗糖发酵液,其中含有糖和 pH 指示剂。2. 使用便签创建标签,上面写有您的姓名、指定的生物和培养基类型。 3. 从琼脂平板上取少量细菌,加入到每个发酵管中。 4. 培养发酵管直至下一次实验。培养后,观察每个蔗糖发酵管的外观: - 黄色发酵液:阳性(发酵蔗糖) - 红色发酵液:阴性(不发酵蔗糖) 将发酵管丢弃在实验室后面的废弃架中。 尿素酶测试 获取尿素琼脂斜面并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环将细菌添加到整个斜面中。 孵育直到下一次实验课。 孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。 吲哚测试 获取胰蛋白胨肉汤并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环向每种培养物中添加少量细菌。 孵育直到下一次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。
抗生素耐药性已成为一个公共卫生问题,高发病率和死亡率很高,主要影响新兴经济体的国家(Zhen等,2019)。世界卫生组织(WHO)认为,在2050年,与抗菌抗药性相关的感染(AMR)将导致每年1000万人死亡(Giono-Cerezo等人,2020年)。疾病控制与预防中心(CDC)估计,在美利坚合众国(美国),与抗生素耐药性微生物有关的感染每年至少造成23,000人死亡(Yu-Xuan等人,2020年)。由于AMR细菌引起的感染,健康个人需要使用高毒性抗生素,例如Colistin或上一代抗菌剂的有限列表(Benkő等,2020年)。在2017年2月,该人出版了一份抗生素耐药的微生物清单,为新的抗菌治疗的发展被认为是紧急的。此列表包括来自Eskape组的微生物:粪肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,baumannii acinetobacter baumannii,pseudomonas aeruginosa和aeruginosa和intobacter sppter spp(de oliveirira spp(de oliveira et e et an de oliveira et et and.2020)。由于它们的内在和广泛的抗生素耐药性,并且能够获取多种基因赋予它们多药耐药性(Ayobami et al。,2022)。此外,它们也被认为是大多数医疗相关感染(HAI)的原因,特别是对于严重患病和免疫功能低下的患者(Yu-Xuan等,2020; Ayobami et al。,2022)。几项研究表明,患有AMR感染的患者更难以接受适当的治疗方法,使他们能够解决感染,从而使他们能够传播抗菌抗性,但这种情况也必须使这些患者更有可能在ICU中接受,并接受更多的抗生素治疗(Zhen等人,2019年; 2019年; santos-Zont Al。在当地,没有研究或报告评估Eskape组抗菌剂的抗性。在2014年至2015年期间,在Me ́ Xico市的六个卫生机构中对细菌抗性进行了监测研究,其中评估了抗生素耐药性。结果强调了氨苄青霉素/磺胺硫酸氨基氨木的耐药性高分,以及对肺炎链球菌分离株的抗tigecycline的抗性。这项研究还显示出对头孢菌素,酸磷脂,cipro氟沙霉素,阿米卡辛,庆大霉素和毒素分离株中对头孢菌素的敏感性低(Bolado-Martı́nez Nez等,2018)。由于这些先前的结果,重要的是实施包括主动流行病学监测的措施,以获取有关索诺拉卫生机构中埃斯卡普集团微生物的患病率和抵抗力的更多信息。这将允许及时检测Eskape组的微生物,以鉴定其抗生素耐药性纤维,并在每个患者需要的抗生素上使用抗生素抗性。这项研究的目的是分析Eskape群微生物的抗生素耐药性,这些抗生素耐药性是从Hermosillo的11个卫生机构和Ciudad Obrego的11个卫生机构中回收的,在2019 - 2020年期间,我是Me ́ Xico。
摘要:新鲜水果和蔬菜是健康饮食的重要组成部分,但由于微生物污染而经常与食源性疾病有关。因此,本文的目的是隔离和鉴定与西红柿(豆lycopersicum),香蕉(Musaspp。),菠菜(Spinacia oleracea)和秋葵(Abelmoschus esculentus)通常在尼日利亚Kwarra State的旧市场上出售,使用标准微生物技术。新鲜农产品的细菌负荷范围为0.7 x -1.8 x,在变质农产品中的3.3 x -7.0 x范围内。在变质的农产品中,总细菌负荷较高,宠坏的香蕉记录7.0×10 cfu/ml,而新鲜的Okra的细菌载荷的最低细菌载荷为0.7×10×10 cfu/ml。形态学和生化分析确定了大肠杆菌,沙门氏菌属。,肺炎克雷伯氏菌,金黄色葡萄球菌,铜绿假单胞菌,枯草芽孢杆菌和肠杆菌的生气器。克雷伯氏菌肺炎是最普遍的物种,发生在66.67%的香蕉样品中,菠菜样品的33.33%和33.33%的番茄样品。这些发现突出了新鲜和变质农产品的严重微生物污染,强调了与食用原始或最少加工的水果和蔬菜相关的潜在健康风险。该研究强调了在处理,存储和销售期间改善卫生实践的需求,以及实施定期的微生物监测,以确保当地市场的食品安全。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。(2024)。J. Appl。doi:https://dx.doi.org/10.4314/jasem.v28i12.16许可证:CC-BY-4.0开放访问策略:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分发,reporstribute,repost,repost,repost,compost,compost,translate,translate和read。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Abdulrahaman,F。B;穆罕默德(J); Abdulkareem,T。Z。与西红柿,香蕉,菠菜和秋葵相关的致病细菌的隔离和鉴定,通常在尼日利亚夸拉州的旧市场出售。SCI。 环境。 管理。 28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。 他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。 全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ETSCI。环境。管理。28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ET
客观这项回顾性研究的主要目的是评估引起手术部位感染(SSIS)的病原体差异(SSIS)和颅骨切除术和开放性脊柱外科手术的差异。次要目的是评估这些手术程序中SSI率的差异。使用Bonferroni校正和发病率风险比(RRS)的方法ANOVA测试用于通过手术部位和手术方法和程序使用回顾性,去识别的19993年神经外神经外科治疗后治疗的病原体的病原体差异,并在2007年至2020年之间治疗。结果的总体感染率分别为2.1%,1.1%和1.5%,宫颈,胸椎和腰椎手术的总体感染率分别为0.3%,1.6%和1.9%,分别为2.1%,1.1%和1.5%。颅骨术/颅骨切除术比脊柱手术更有可能导致SSI(RR 1.8,95%CI 1.4-2.2,p <0.0001)。cutibacterium痤疮(RR 24.2,95%CI 7.3-80.0,p <0.0001);凝固酶阴性葡萄球菌(CONS)(甲基酸蛋白敏感的缺点:RR 2.9,95%CI 1.6-5.4,p = 0.0006;耐甲氧西林抗性cons:RR 5.6,95%CI 1.4-22.3,p = 0.02); klebsiella aerogenes(RR 6.5,95%CI 1.7-25.1,p = 0.0003); Serratia Marcescens(RR 2.4,95%CI 1.1-7.1,p = 0.01);肠杆菌(RR 3.1,95%CI 1.2-8.1,p = 0.02);和念珠菌(RR 3.9,95%CI 1.2-12.3,p = 0.02)更常见于颅骨术/颅骨切除术病例,而不是融合或椎板切除术SSIS。大肠杆菌和铜绿假单胞菌的感染主要发生在腰椎(分别为p = 0.0003和p = 0.0001)。pseudomo-nas铜绿可与裂缝SSIS相比SSIS(RR 4.4,95%CI 1.3-14.8,p = 0.02),而埃斯切里希菌大肠杆菌与融合ssis无关紧要,与颅骨SSIS相比,与颅骨SSIS相比,与颅骨SSIS相比(RR 4.1,95%1,95%,95%,95%)。结论是由于典型的胃肠道或泌尿粒革兰氏阴性细菌引起的SSI,最常见的是腰部手术后最常见的是,尤其是融合,可能是由于Perianal区域和生殖株在手术床和微生物菌群中的污染所致。头部和颈部皮肤菌群中的痤疮痤疮增加了这些身体部位手术干预后这种微生物引起的感染风险。与颅骨术/颅骨切除术相关的革兰氏阴性细菌类型表明这些病原体的潜在环境来源。基于作者的发现,神经外科医生还应考虑与苯甲酰苯甲酰过氧化苯甲酸苯甲酸苯甲酸苯甲酸苯甲酰基制剂,此外,除了标准的防腐剂(例如酒精性杀菌剂)用于颅,颈椎和上胸外科手术。此外,应考虑使用更广泛的革兰氏阴性细菌覆盖范围,例如使用第三代头孢菌素,以用于腰椎/腰椎融合手术抗生素预防。
摘要:本文旨在评估尼日利亚阿夸伊博姆州主要湿地(Nwaniba、Ibaka、Ibeno 和 Itu)的对虾(Macrobrachium vollenhovenii)鱼片中的微生物含量、物种特征和组成。使用标准微生物程序确定对虾鱼片中的微生物含量、物种特征和组成。研究结果显示,总异养细菌计数范围从 Ibeno 样本的 2.10 x 104cfu/g 到 Itu 样本的 7.30 x 104cfu/g。Itu 样本还记录了总异养真菌计数的最高值(3.5 x 104cfu/g)。共分离出 8 种细菌(金黄色葡萄球菌、白色葡萄球菌、产气肠杆菌、蜡状芽孢杆菌、大肠杆菌、藤黄微球菌、弗氏节杆菌和沙门氏菌)和 6 种真菌(热带念珠菌、黑曲霉、黄曲霉、土曲霉、粘毛霉和根霉)。细菌种类藤黄微球菌和弗氏节杆菌的出现频率为 100%,而真菌种类为热带念珠菌。这些湿地地区的虾样本中存在这些致病生物可能意味着对虾消费者的健康构成潜在威胁,尤其是当产品在食用前未煮熟或加工不当时。 DOI:https://dx.doi.org/10.4314/jasem.v27i11.37 开放获取政策:JASEM 发表的所有文章均为由 AJOL 提供支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的全部或部分文章,包括图版、图表和表格。版权政策:© 2023 作者。本文是一篇开放获取文章,根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可的条款和条件分发。只要引用原始文章,即可重新使用文章的任何部分而无需许可。引用本文为:EFFIONG, M. U; ADEYEMI, AV (2023)。对尼日利亚阿夸伊博姆州主要湿地对虾(Macrobrachium vollenhovenii)鱼片的微生物负荷、物种特征和组成进行评估。 J. Appl. Sci. Environ. Manage. 27 (11) 2643-2649 日期:收到日期:2023 年 9 月 30 日;修订日期:2023 年 10 月 29 日;接受日期:2023 年 11 月 7 日 出版日期:2023 年 11 月 30 日 关键词:湿地、异养细菌计数、真菌计数、Macrobrachium vollenhovenii 世界各地海鲜中毒事件的不断增加凸显了微生物控制在渔业中的重要性。研究表明,微生物风险评估已成为评估食品和水供应安全的新兴工具(Effiong 和 Christopher,2020 年)。据报道,对虾携带可导致海传播疾病的病原体(Iwamoto 等人,2010 年)。据报道,其中一些致病菌(弧菌属、沙门氏菌属、链球菌属和葡萄球菌属)可导致人类出现各种健康问题(Lipp 和 Rose,2011 年)。尽管虾具有健康和营养价值,但它极易腐烂,肠道中可能寄生大量细菌
蛤蜊是带壳的海洋或淡水软体动物,属于双壳纲。它们是无脊椎动物,壳分为两部分,称为瓣。它们是蛋白质和矿物质(尤其是钙)的丰富来源,建议孕妇和蛋白质缺乏症患者食用。它们栖息在淡水水体或流速缓慢的水域底部。淡水是指溶解盐或其他杂质含量低于千分之零点五的水,存在于淡水湖泊、沼泽和一些河流中。水体中垃圾、底物和其他粪便物质的沉积导致水中病原微生物(细菌)的积聚,给包括蛤蜊在内的水生生物带来沉重的负担。水体中细菌的浓度随季节而变化。因此,本研究旨在了解与蛤蜊有关的淡水中存在的细菌和真菌的类型和密度,并确定微生物在淡水生态系统中十个月内对蛤蜊营养价值的影响。用于分析的样品是伊图河的水,标记为样品 A,样品 B 是用于冲洗蛤蜊的水,样品 C 是均质蛤蜊肠,样品 D 是均质蛤蜊体。使用连续稀释和平板法确定微生物负荷。使用不同的标准生化测试对微生物分离物进行表征和鉴定,以确定:菌落形态、革兰氏染色反应、孢子染色、运动性、糖发酵、吲哚、凝固酶和过氧化氢酶的产生。使用官方分析化学协会概述的方法进行物理化学和营养分析,以测试水分含量、灰分含量、粗蛋白、纤维、脂肪和矿物质元素。各项分析结果表明,在十个月的采样期内,四个样品的微生物总数在二月份最高,样品 C 的微生物总数最高,为 1.2 X 105 cfu/mL,其次是样品 D,为 7.0 X 104 cfu / mL,样品 B 的微生物总数为 5.8 X 104 cfu / mL,而样品 A 的微生物总数最低,为 4.4 X 104 cfu / mL。九月份的微生物总数最低,样品 C 的微生物总数为 3.7 X 104 cfu / mL,其次是样品 D,为 2.4 X 104 cfu / mL,样品 B 的微生物总数为 8.0 X 103 cfu / mL,而样品 A 的微生物总数最低,为 4.0 X 103 cfu / mL。淡水样品和蛤蜊中存在的微生物大多是来自粪便的大肠菌群,包括:金黄色葡萄球菌、产气肠杆菌、舌螺旋体、蜡状芽孢杆菌、植物乳杆菌、大肠杆菌、水生黄杆菌和变异微球菌。我们得出结论,旱季的微生物负荷高于雨季,这可能是由于雨季水稀释和流速加快所致。结果还表明,蛤蜊的营养价值随季节和微生物负荷密度而变化。我们建议对捕捞蛤蜊的水进行适当的卫生处理,并在食用前将蛤蜊适当煮熟并去除内脏,尤其是在旱季。
Mukhtorova Shokhida Abdulloevna Bukhara State医学研究所以Abu Ali Ibn Sino命名,该文章摘要对Bukhara区域感染疾病医院的患者进行了细菌分析,该患者从2020年3月16日至2020年2月16日至2022年2月02日确认了Coronavirus Intection covid-codiction codiction covid-19(实时RT阳性)。SARS-COV-2的典型PCR)显示了从患者PR中采集的粪便样品的结果。ulgaris,pr。Mirobllis,Kl.phevmoniae,来自圣肺炎绿色;从血液样本中分离出s. epidermis。大多数孤立的微生物对左氧氟沙星,amikacin,ciprofloxacin和Cefoperazone sulbactam敏感。关键词:抗生素抗性;新冠肺炎;肺炎; SARS-CoV-2;痰培养;血液培养。该主题在2019年12月的相关性,中国武汉[1]发生了几例严重的未知来源肺炎病例,后来被诊断为冠状病毒2019(COVID-19),其病因学剂是SARS-COV-2(严重的急性呼吸道呼吸综合症综合征2)。它属于冠状科家族的β家族[2,3]。2020年3月11日,世界卫生组织(WHO)将这种疾病宣布为大流行。SARS-COV-2的细菌性超感染和死亡率显着高于任何其他常见呼吸道病毒综合征[5,6]。截至2022年3月14日,已在全球确认了456,797,217例Covid-19案件,其中包括6,043,094例死亡。(https://www.who.int/)。用其他微生物(尤其是细菌和真菌)与SARS-COV-2进行了超级感染,这是Covid-19的发展的关键因素,使诊断,治疗和预后复杂化[7,8]。在患有疾病的进展和预后的住院患者中,细菌性超级感染。这种情况增加了重症监护病房的住院,抗生素治疗和死亡率[9,11,12]。在确认的冠状病毒感染患者中,抗菌治疗在治疗可疑或确认的细菌呼吸道感染中起着重要作用。通常,这种类型的疗法本质上是经验性的,或用于治疗住院治疗期间在住院治疗期间在住院治疗期间获得的医院感染。患者也可能患有与呼吸道无关的继发感染,例如尿路或血流感染[13,14,15]。众所周知,呼吸道病毒感染的过程通常与添加严重的细菌和真菌感染有关[16,17,18]。许多研究人员指出,由肺炎链球菌,金黄色葡萄球菌,流感嗜血杆菌和曲霉sp引起的继发细菌感染的发展增加。然而,目前,Covid-19患者中继发性细菌感染的患病率和严重程度的这种数据目前相对较少。证明抗菌药物为COVID-19的处方处方合理的解决方案之一是使用procalcitonin,Procalcitonin是细菌感染的特定生物标志物[6,21]。已经表明,降钙素维持细菌和病毒感染之间的区别,并促进早期抗生素戒断,而不会影响确认细菌感染的患者的死亡率[22,23]。已经报道了使用covid-19-concalcitonin的使用,并且可能是帮助减少抗菌药物使用的重要工具[24]。该研究的目的是确定从COVID-19患者中分离出的主要病原体的微生物景观和抗生素敏感性。从2020年3月16日至2022年2月2日的材料和方法,被诊断出3,467例Covid-19冠状病毒感染。细菌学研究是对从中提取的1169个样品(痰,粪便,血液)进行的。
*信函:odinita.chime@uniben.edu; doi:https://doi.org/10.52417/njls.v13i1%20&%202.374抽象的红辣椒(辣椒辣椒lim)是辣椒属中最经济重要的物种。他们属于茄科的茄科。它的形状,尺寸,颜色,风味,热量水平和营养特性变化。这项研究旨在确定从贝宁市都会和周围五个不同市场购买的新鲜辣椒辣椒的近端,矿物质和微生物评估。总共购买了25个胡椒样品;标准的生化方法用于分析其近端组成。The proximate composition included moisture (4.48±0.18 g/100g), ash (4.94±0.14 g/100g), carbohydrate (17.60±0.34 g/100g), protein (11.40±0.16 g/100g), fat (23.65±0.41 g/100g), crude protein (21.29±0.28 g/100g)和粗纤维(38.76±1.07 g/100g)。对矿物元素含量的分析表明,钾是最丰富的(654.12±5.46 mg/100g),其次是镁(237.59±3.63 mg/100g),钙(174.71±2.93 mg/100g),铁(17.49±0.49±0.25 mg/100g),Sodium(17.49)和锰(2.16±0.05 mg/100g)。对胡椒样品的微生物评估产生了八种微生物,包括芽孢杆菌,念珠菌,金黄色葡萄球菌,肠杆菌sp。和大肠杆菌。从Uselu市场采购的样品(32.1%)是微生物污染最多的样本,而来自Oliha市场的样本(12.5%)受感染最少。芽孢杆菌金黄色葡萄球菌和金黄色葡萄球菌是最普遍的微生物,每种生物的患病率为23.2%。在研究的新鲜红辣椒中,细菌污染不仅仅是真菌。也观察到,这些红辣椒的环境对它们的变质有很大贡献。这项研究的结果表明,胡椒可能是改善人类健康的重要饮食补充剂,但必须注意防止在处理和储存过程中微生物污染。关键字:近端,矿物质,胡椒,微生物,变质简介胡椒(Capsicum spp。)是标志性和多样化的植物物种(Bosland and Fotava,2002)。它们的大小,形状,颜色,风味,热量,营养价值和应用都不同。辣椒的品种与成长的地区和耕种者一样多。辣椒是全球使用的辛辣和非辣味的来源。辣椒是奇特的,因为它们被用作蔬菜(或严格地说是水果)和香料(Greenleaf,1986)。他们将菜肴赋予味道,颜色和辣味。此外,它们还提供重要的维生素,矿物质和营养。胡椒的提取物用于药物,化妆品,绘画和胡椒喷雾剂。除了用作饭菜,调味品和药物外,辣椒还用于其美学价值。它是茄科家族和亚家族词素科的成员,是由于其必不可少的应用而在全球范围内培养的,因为其食品,香料,装饰,药物,lachrymatories和Lachrymatories和Vitamins(A和C)(A和C)(Perry等,2007)。人类饮食中的微量营养素不足仍然是一个巨大的全球问题,很可能是几种慢性健康问题和疾病的根本原因。据估计,全世界有超过两(2)亿人在重要的矿物质和维生素(尤其是锌,碘,维生素A和铁)中不足,这主要是由于食用不良而导致的。只有在脆弱人群的饮食包括适当水平的所有基本要素时,才有可能以持续方式消除微量营养素的缺陷。在消除人类营养不足的几种策略中,食用各种食物,尤其是含有各种微量营养素的蔬菜,仍然被视为最可行的替代品。辣椒辣椒(辣椒辣椒)的广泛摄入量,以其丰富的营养含量(包括多种维生素,矿物质,植物化学物质和饮食纤维)而被认可,5月
使用的指示:以与标签不一致的方式使用该产品是违反联邦法律的。Bio Clean是一种无磷酸盐的配方,旨在为学校,办公室,酒店,汽车旅馆,自助餐厅,餐馆,杂货店和公寓建筑提供有效的清洁,除臭和消毒。bio Clean按照指示使用时,将配制,以将无生命的,坚硬的,无孔的表面消毒,由不锈钢,铬,瓷器,玻璃,玻璃,乙烯基或塑料在墙壁,地板,水槽顶部,桌子,桌子和椅子上进行消毒。在诸如洗手间之类的较大区域,生物清洁旨在提供一般清洁和消毒。如果在食物接触表面上使用,请用饮用水彻底冲洗这些表面。Bio Clean将通常难以保持新鲜气味的区域除臭,例如垃圾存储区域,空垃圾箱和罐子以及任何其他容易受到微生物引起的气味的区域。清洁/除臭/消毒:要清洁/除臭/无孔表面,请按照以下步骤操作。分配器将自动提供包含1盎司的解决方案。生物清洁至1-2加仑的水。1。卸下帽子。将生物清洁容器倒置在分配器中。2。将水打向分配器。3。将分配器出口管放在插座上(MOP桶,桶,水罐,扳机喷雾器等)并打开分配器。将插座填充到所需的水平,然后关闭。4。卸下分配器出口管。5。用拖把,海绵,触发喷雾器或布应用此溶液,以彻底弄湿所有表面。如果喷涂,请使用粗喷雾剂。允许保持湿10分钟,然后让气干。为每种用途准备新的解决方案。对于严重弄脏的区域,需要一个预算步骤。进行重型清洁,请使用每加仑水2盎司的生物清洁。如果将生物清洁用于直接食物接触表面,例如台面,桌子,电器和/或炉灶,则用饮用水彻底冲洗这些表面。该产品不得在以下食物接触表面上使用:餐具,玻璃器皿和菜肴。BACTERICIDAL ACTIVITY: At the stated disinfection dilution rate, this product exhibits effective disinfectant activity against the organisms Escherichia coli, Klebsiella pneumoniae, Salmonella scholtmuelleri, Salmonella enterica, Brevibacterium ammoniagenes, Enterococus faecalis, Shigella dysenteriae, Staphylococcus金黄色葡萄球菌和肠杆菌,金黄色葡萄球菌,金黄色葡萄球菌,肠球菌耐达多霉素。发霉:为了控制霉菌和霉菌,在纯净的硬孔表面上,请按照规定的稀释率使用生物清洁进行消毒。用布,拖把,海绵或手动泵扳机喷雾器涂抹溶液,确保完全弄湿所有表面。如果喷涂,请使用粗喷雾剂。让空气干燥。为每种用途准备新的解决方案。每周或霉菌生长时重复应用。疗效测试表明,在存在有机土壤的存在下,生物清洁是一种有效的杀菌剂(5%血清)。如果在食物接触表面上使用,请用饮用水彻底冲洗这些表面。*VIRUCIDAL ACTIVITY- BIO CLEAN, when used on environmental, inanimate, hard nonporous surfaces at the disinfectant dilution rate with a contact time of 10 minutes, exhibits effective virucidal activity against HIV-1, Hepatitis B (HBV) Influenza A2, Parainfluenza Type 1 (Sendal), Canine Distemper, Feline Pneumonitis, Vaccicnia Virus, and单纯疱疹1。在1盎司使用时对乙型肝炎有效。每加仑的水(1240 ppm quat)遵循上述消毒方向。在先前被血液/体液弄脏的纯净环境表面/物体上杀死HIV-1和HBV,预计有可能弄脏无生命表面/物体的血液或体液的物体,并且表面/物体可能与人体流体相关的是与人体流动相关的表面/物体可能与人体流体相关的人类免疫,并且可能与人体流体相关联(Hume and typrive and afrip)。 HBV。针对用血/体液弄脏的表面/物体的HIV-1和HBV清洁和净化的特殊说明。个人保护:处理用血液或体液弄脏的物品时,使用一次性乳胶手套,礼服,口罩或眼罩。清洁程序:在应用生物清洁之前,必须从表面和物体中彻底清洁血液和其他体液。接触时间:让表面保持湿10分钟。处置传染性材料:根据当地法规,应对传染性废物处置进行高压灭菌和处置血液和其他体液。