摘要:尽管蛋白质结构的计算机设计取得了进展,但事实证明,通过此类方法设计有效的酶催化剂非常困难。该领域的挑战之一是通过计算机设计催化肯普消除反应的酶,这种反应在自然界中是观察不到的。在几种此类设计中,有一系列的催化速率常数可以通过实验室进化提高几千倍,尽管与催化类似化学反应的天然酶相比仍然很小。这些进化的设计酶还表现出与热展开无关的异常温度最适值。在这里,我们报告了这些酶的催化反应和构象热力学的广泛计算机模拟,以分析催化活性低和温度行为异常的根本原因。结果表明,酶-底物复合物存在较低的能量状态,这在具有过渡态类似物的晶体结构中是看不到的,这解释了低活性的原因。化学步骤和两种反应物状态之间的过渡的计算阿伦尼乌斯和范特霍夫图均为线性,并且发现所得的反应热力学使催化屏障完全熵化。基于我们计算出的热力学参数的动力学建模为最佳温度提供了两种可能的定量解释:308 K 时限速步骤的变化或底物结合后热容量变化为 − 0.3 kcal/mol/K,其中实验数据似乎与前者最为一致。关键词:酶动力学、Kemp 消除、酶设计、熵、热容量 ■ 简介
Juno AI 让您可以轻松地将 Alexa 放置到家中的每个房间,最佳位置位于混乱之上,几乎看不见,无需集线器。它清除了杂乱,消除了对桌面单元、冰球和其他壁挂式智能设备的需求。使用 Juno AI,您可以安装一个可以控制多达 200 台设备的智能产品。
作者:Herb Shivers,博士,PE,CSP,NASA 马歇尔太空飞行中心安全与任务保障局副局长。NASA 正在开发太空发射系统——一种先进的重型运载火箭,它将为人类探索地球轨道以外的空间提供全新的能力。太空发射系统将提供一种安全、经济且可持续的手段,让我们能够超越目前的极限,从独特的太空视角探索新事物。首次开发飞行或任务计划于 2017 年底完成。太空发射系统 (SLS) 将用于将猎户座多用途载人飞船以及重要的货物、设备和科学实验运往地球轨道和更远的目的地。此外,SLS 将作为商业和国际合作伙伴向国际空间站提供运输服务的后备。SLS 火箭将结合航天飞机计划和星座计划的技术投资,以利用成熟的硬件和尖端的工具和制造技术,从而大大降低开发和运营成本。该火箭将使用液氢和液氧推进系统,该系统将包括航天飞机计划的 RS-25D/E 发动机(用于核心级)和 J-2X 发动机(用于上级)。SLS 还将使用固体火箭助推器进行初始开发飞行,而后续助推器将根据性能要求和可负担性考虑进行竞争。SLS 的初始升力为 70 公吨。这超过 154,000 磅,即 77 吨,大约相当于 40 辆运动型多用途车的重量。升力将可升级到 130 公吨——超过 286,000 磅,即 143 吨——足以升起 75 辆 SUV。这种架构使 NASA 能够利用现有能力并降低开发成本,方法是将液氢和液氧用于核心级和上级。此外,这种架构提供了一种模块化运载火箭,可以使用