这项研究的目的是制定含纳米颗粒的局部凝胶,用于糖尿病足溃疡(DFU)。在这方面,使用自发乳化技术制备纳米颗粒制剂。lineZolid(LZD)负载的纳米颗粒配方表现出较低的平均颗粒尺寸(PS)为195.27±5.42 nm,低散射指数(PI)为0.214±0.019,高Zeta势率(ZP)高Zeta电位(ZP),为20.57±0.35 mV和高毒药效率(99.09)。为了提高局部停留时间,使用甲基TM K4M(HPMC)和Carbopol®974P NF将LZD负载的纳米颗粒分散在凝胶配方中。配制的凝胶表现出有利的特性,包括适当的pH值,适当的机械性能以及理想的粘度和局部应用的可传播性。所有配方均显示了指定频率值的假塑性流和典型的凝胶型机械光谱。Moreover, the developed formulation achieved sustained drug release as intended for these systems.During ex vivo drug diffusion studies, 0.007±0.004% of LZD was found in receptor phase, indicating a local effect.The optimum formulation was stable for six months.最初的发现表明,配制的含有LZD的纳米颗粒的局部凝胶具有有效的DFU管理药物输送系统。However, further comprehensive investigations are required to substantiate this hypothesis.
本专著记录了最初于 2008 年完成的研究,该研究旨在从伊拉克和阿富汗的行动中吸取教训,了解先进网络在陆军行动中的实用性。所使用的数据和案例以及得出的结论都是截至 2009 年的最新数据。自研究完成以来发生了很多事情,陆军已经应用了许多经验教训。重要的是,陆军继续开发和试验新的网络功能。然而,这项研究发现的广泛经验教训仍然具有现实意义,并且可以继续为陆军的持续努力提供参考。美国陆军正在大力投资网络,旨在大幅提高作战能力。该军种将其未来战场上的胜利很大程度上押注于这样一个主张:通过适当的网络连接在一起的部队可以击败对手。理论上,联网部队可以知道其他友军的位置,对敌人的位置有共同的了解,并能够制定计划,对敌人进行大规模打击(小型武器射击、炮火和迫击炮火,或许还有精确弹药的空袭)并消灭敌人,同时避免被敌人的机动、突击和格挡所困。这种高度精确和同步的战争很难实现;它目前依赖于仍在兴起的通信和信息技术、士兵掌握复杂的信息管理技能,以及两者与各级战术行动的结合。这项工作代表了前所未有的理论、组织、训练和物资现代化。无论如何
摘要 立方体是纳米生物工程的产物,是一种自结构脂质纳米粒子,其作用类似于载药的诊断探针。本文,我们描述了一种制备组合载药立方体的简单方法,经原理验证,该立方体具有治疗癌细胞的作用以及诊断能力。抗癌药物顺铂和紫杉醇组合装载在立方体中。立方体上涂有一层聚-Ɛ-赖氨酸,这有助于避免药物最初的爆发性释放,并允许缓慢和持续释放以获得更好的疗效。用透射电子显微镜对立方体进行成像,并通过差示扫描量热法和X射线衍射图研究在体外分析其分散性。显微图像描绘了球形多角结构,很容易区分。分析表明,药物均匀分散在整个立方体中。通过 zeta 电位测量、体外释放和包封率研究进行了进一步表征。体外研究表明,立方体涂层最初成功地减少了药物的爆发性释放,并证实了随着时间推移,药物释放缓慢而持续。使用人肝癌 HepG2 细胞系评估了涂层、未涂层和空白立方体的细胞毒性比较,发现这些制剂完全无毒,与空白制剂相似。通过阻抗测量和荧光成像证实了立方体对 HeLa 细胞的治疗效果。此外,用涂层组合立方体处理的细胞阻抗降低证明了 HeLa 细胞的损伤,这通过荧光显微镜得到证实。
神经组合优化(NCO)是一个新兴领域,采用深度学习技术来解决组合优化问题作为独立的求解器。尽管具有潜力,但现有的NCO方法通常会避免效率低下的搜索空间探索,这通常会导致对先前访问的州的局部最佳捕集或重大探索。本文介绍了一种多功能框架,以组合优化为内存的增强(MARCO),可用于通过Innova的内存模块来增强NCO中的建设性和反复证明方法。Marco存储在整个优化轨迹中收集的数据,并在每个状态下检索上下文相关的信息。以这种方式,搜索以两个综合标准为指导:就解决方案的质量而做出最佳决定,并避免重新研究已经探索的解决方案。这种方法可以更有效地利用可用的选择预算。此外,由于NCO模型的并行性质,几个搜索线程可以同时运行,所有搜索线程都可以共享相同的内存模块,从而实现了有效的协作利用。经验评估是根据最大切割,最大独立集和推销推销员的问题进行的,表明内存模块有效地增加了探索,并促进了模型,以发现各种质量,更高质量的解决方案。Marco在低计算成本中实现了良好的性能,在NCO领域建立了有希望的新方向。
3.09.1 简介 204 3.09.1.1 Leloir 与非 Leloir GT 及其供体底物 204 3.09.1.2 基于序列的 CAZy 家族和 GT 的结构分类 205 3.09.1.3 GT 的机制 205 3.09.1.3.1 反转 GT 机制 205 3.09.1.3.2 保留 GT 机制 206 3.09.2 GT 活性的抑制 208 3.09.2.1 GT 抑制剂的类型 208 3.09.2.1.1 GT 底物类似物和过渡态类似物 208 3.09.2.1.2 GT 的糖基化抑制剂 211 3.09.2.1.3 天然产物作为 GT 抑制剂 212 3.09.2.1.4 结构多样的合成小分子作为 GT 抑制剂 214 3.09.2.2 识别 GT 抑制剂的高通量筛选策略 215 3.09.2.2.1 通过核苷酸释放测量 GT 活性的偶联酶测定 215 3.09.2.2.2 基于碳水化合物微阵列的 GT 测定 216 3.09.2.2.3 基于荧光偏振的 GT 测定 217 3.09.2.2.4 使用荧光团标记的糖供体直接荧光测定 GT 活性 219 3.09.2.2.5 糖苷酶依赖性荧光偶联 GT 测定 219 3.09.3 GT 活性工程 221 3.09.3.1 使用合理的蛋白质设计修改 GT 活性 221 3.09.3.1.1 GT 的定向诱变 221 3.09.3.1.2 域交换生成 GT 嵌合体 222 3.09.3.2 高通量筛选策略及其在发现和设计 GT 活性中的应用 225 3.09.3.2.1 用于天然产物 GT 定向进化的基于平板的荧光猝灭策略 225 3.09.3.2.2 通过 FACS 进行细胞内荧光捕获以筛选 GT 活性 225 3.09.3.2.3 在基于平板和颗粒的体外试验以及基于 FACS 的体内试验中利用聚糖结合蛋白筛选 GT 活性 227 3.09.4 结论 228 参考文献 228
摘要简介:最近的研究表明,雷帕霉素作为哺乳动物雷帕霉素靶点 (mTOR) 抑制剂,可能对中枢神经系统 (CNS) 相关疾病产生有益的治疗作用。然而,雷帕霉素的免疫抑制作用作为不良反应、低水溶性、体内快速降解以及血脑屏障相关的挑战限制了该药物在脑部疾病的临床应用。为了克服这些缺点,设计和开发了一种含有雷帕霉素的转铁蛋白 (Tf) 修饰的纳米结构脂质载体 (NLC)。方法:使用溶剂扩散和超声处理法制备载雷帕霉素的阳离子和裸 NLC,并进行充分表征。最佳阳离子 NLC 用 Tf 进行物理修饰。对于体外研究,评估了 U-87 MG 胶质母细胞瘤细胞的 MTT 测定和纳米粒子的细胞内摄取。通过荧光光学成像评估纳米粒子的动物生物分布。最后,还研究了 NLC 对免疫系统的体内影响。结果:球形 NLC 粒径小,范围从 120 到 150 nm,包封率高,超过 90%,细胞存活率≥80%。更重要的是,与裸露的 NLC 相比,Tf 修饰的 NLC 在孵育 2 小时后显示出明显更高的细胞摄取率(97% vs 60%),并且进一步在小鼠脑内有适当的蓄积,在非靶向组织中的摄取率较低。令人惊讶的是,载有雷帕霉素的 NLC 没有表现出免疫抑制作用。结论:我们的研究结果表明,设计的 Tf 修饰的 NLC 可以被视为一种安全有效的雷帕霉素靶向脑递送载体,这可能在临床治疗神经系统疾病方面具有重要价值。
摘要:阿霉素盐酸盐(DOX)目前用于治疗正性和转移性乳腺癌。由于其侧面影响,有时在癌症患者中使用DOX。因此,一些科学家尝试设计可以改善药物治疗效率并降低其侧面影响的药物输送系统。在这项研究中,我们设计,制备和生理化学表征的非离子表面活性剂囊泡(NSV)是通过与胆固醇的亲水性(Tween 20)和疏水性(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)(SPAN 20)和胆固醇的自生组装不同组合获得的。DOX使用被动和pH梯度远程加载程序在NSV中加载,该程序将药物载荷从〜1增加到约45%。NSV,并选择具有最佳生理化学参数的纳米载体,以进一步进行体外测试。NSV稳定,显示出持续的药物释放至72小时。 MCF-7和MDA MB 468细胞的体外研究表明,含有SPAN 20的NSV在MCF-7和MDA MB 468细胞中的内在化更好。nsvs增加了DOX在MCF-7和MDA MB 468细胞中的抗癌效应,并且这种影响是时间和剂量依赖性。使用转移性和非转移性乳腺癌细胞的体外研究还表明,含有SPAN 20的NSV比具有Tween 20的NSV具有更高的细胞毒性。结果数据表明,加载DOX的NSV可能是潜在治疗转移性乳腺癌的有希望的纳米载体。■简介
受控释放的微粒为增强患者兼容并最小化剂量频率的途径提供了有希望的途径。在这项研究中,我们旨在设计使用Eudragit S100和Methocel K 100 M聚合物作为控制剂的Glipizide的受控微粒。通过一种简单的溶剂蒸发方法制造了微粒,采用各种药物与聚合物比例制造出标记为F1至F5的不同受控释放批次。对微粒的评估包含一系列参数,包括流量性能,粒度,形态,百分比,捕获效率,药物加载百分比和溶解研究。此外,还采用了各种动力学模型来阐明药物释放机制。此外,还利用了差异和相似性因子来比较测试公式的溶解轮廓与参考公式。可压缩性指数和休息角表示所制备的微粒的有利流量,其值分别在8至10和25至29的范围内。从95.3到126μm的微粒的粒径分布。令人鼓舞的是,微粒的产量高(66%至77%),夹带效率(80%至96%)和药物加载百分比(46%至54%)。所有配方的批处理均显示出受控的药物释放曲线,最多延长了12个小时,在异常的非棘手扩散模式之后,glipizide释放。然而,参考公式和各种聚合物微粒的药物释放曲线不能满足可接受的差异和相似性因子的限制。体内研究表明在12小时内持续降血糖作用,表明受控释放的微粒的功效。总体而言,我们的发现表明,在设计受控释放的微粒中成功利用了聚合物材料,从而降低了点频率并有可能提高患者的依从性。
目的:诸如地震之类的自然灾害经常导致受影响的个体的睡眠障碍。在外周神经损伤中看到的神经性疼痛与睡眠障碍有关。这项研究旨在评估神经性疼痛对在2023年2月6日发生的以Kahramanmaraş为中心的地震期间遭受周围神经损伤的患者对睡眠质量的影响,并从瓦砾中获救。方法:该研究包括45个具有电生理学确认的周围神经损伤的地球量表幸存者,年龄在18岁及以上。疼痛,并使用Leeds的神经性症状和体征(LANS)的土耳其语版本评估神经性疼痛的存在。使用匹兹堡睡眠质量指数(PSQI)评估睡眠质量,并使用医院的焦虑和抑郁量表(HADS)评估了焦虑和抑郁水平。结果:在遭受周围神经损伤的地震受害者中,发现45人中有31人(69%)患有神经性疼痛。在睡眠质量较差(PSQI≥5)的地震幸存者中,瓦砾下的夹带持续时间,肢体VAS得分,LANSS得分以及HADS抑郁和焦虑得分明显更高(P = 0.018,P = 0.001,P = 0.001,P = 0.008,P = 0.008,P = 0.001,以及P = 0.001,以及P <0.001)。兰斯分数与肢体VAS和PSQI得分具有正相关(r = 0.356,p = 0.016和r = 0.486,p = 0.001)。结论:这项研究表明,由于周围神经损伤引起的神经性疼痛的强度在地震受害者中很高,睡眠质量较差。有必要制定针对性的干预措施,以应对周围神经损伤的地震幸存者面临的独特挑战。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。