摘要 企业传播规划正处于转型期。在 VUCA 世界中,规划必须适应不稳定、不确定、复杂和模糊的环境。战略规划分析、计划、实施和评估传播计划或活动,但同时需要变得越来越敏捷。本文提出了战略规划正在从传统的、相当线性的方法向新的、更具动态性的模型演变的论点。基于文献,通过将设计思维原则、实践和技术引入传播研究的知识体系,提供了一种新的视角。因此,本文将设计思维作为一种思维方式和一种在企业传播规划中创造性解决问题的手段。一项在德国传播机构和咨询公司中进行的定性研究的结果表明,设计思维的元素已被实践者使用和实施。研究确定至少有五种类型的实现,其中三种与设计思维有明显的联系。基于这些发现,一种模块化、以利益相关者为中心的传播规划方法被概念化。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
在当今数字时代,将技术融入教育对于满足学习者多样化的需求变得越来越重要。随着教育机构努力提高学生的参与度和学习成果,游戏化和人工智能 (AI) 等创新策略已成为强大的工具。游戏化将类似游戏的元素融入非游戏环境,旨在提高学习积极性并创造沉浸式学习体验[1]。通过利用积分、徽章和排行榜等游戏机制,教育工作者可以营造一种既有竞争性又有协作性的环境,鼓励学生在学习过程中发挥积极作用。另一方面,人工智能通过分析学生数据并调整内容以满足个人需求来提供个性化的学习体验,从而促进更有针对性的教育方法[2]。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。
摘要 - 准确的定位在自主机器人系统的有效运行中起着至关重要的作用,尤其是在诸如施工站点之类的染色体环境中。同时使用LIDAR传感器同时定位和映射(SLAM)已成为一种流行的解决方案,因为它在没有外部基础架构的情况下可以进行功能。但是,现有的al-gorithms表现出重大的缺点。尽管当前的方法在长期轨迹上达到了很高的准确性,但它们在复杂的室内环境中的精确性和可靠性而苦苦挣扎。本文介绍了一种新型的基于功能的LiDAR SLAM系统,旨在解决这些局限性并增强短期精度和整体鲁棒性。使用现有数据集和物理机器人平台评估了所提出的系统,以解决当前实现的局限性,并在挑战现实世界中,尤其是在施工环境中展示改进的穿孔。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过填充动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描学习此表示形式,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
摘要 - 在具有挑战性的环境中需要可靠的定位,需要现代机器人系统才能运行。基于激光雷达的局部化方法,例如迭代最接近的点(ICP)算法,可能会在几何无知的环境中遭受损害,这些环境已知,这些环境已知会导致点云登记性能恶化,并沿弱受约束方向推动散落的优化。为了克服这个问题,这项工作提出了i)稳健的可局部性检测模块,ii)局限性感知到的受限的ICP优化模块,该模块将其与统一的局限性检测模块相结合。通过利用扫描和地图之间的对应关系来实现所提出的可区分性检测,以分析优化的主要方向的对齐强度,作为其细粒度的LIDAR固定性分析的一部分。在第二部分中,然后将此可本质性分析集成到扫描到映射点云注册中,以通过执行受控更新或离开优化的脱位方向来生成无漂移姿势更新。所提出的方法经过彻底评估并将其与模拟和现实世界实验1中的最新方法进行了比较,证明了激光挑战环境的性能和可靠性提高。在所有实验中,所提出的框架表明没有环境特异性参数调整的准确且可推广的可局部性检测和可靠的姿势估计。