Whitmee,S.,Haines,A.,Beyrer,C.,Boltz,F.,Capon,A。G.,de Souza Dias,B。F.,...&Yach,D。(2015)。保护人类时代的人类健康:洛克菲勒基金会 - 行星健康委员会的报告。柳叶刀,386(10007),1973-2028。*7
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
澳大利亚开放伙伴关系联合研究高桥keitaro kumamoto University ・高级科学与技术学院・副教授韦伯斯特·雷切斯特·雷切斯特·瑞秋·墨尔本大学・物理学系・物理学系教授观察21cm辐射在与莱曼 - 阿尔帕·阿拉克斯(Lyman-Alpha Galaxies)的交叉相关期间,在返回期间的中性氢中的21cm辐射。
MSU密西西比州农业和林业实验站的助理教授 Hill说,这个蚱hopper属可能在更新世时期(也称为冰河时代)中有多元化。 他指出,在洛矶山脉中,随着冰川后退,其栖息地转移到更高的海拔时,在高山草原的这种亚科种类可能被隔离。 希尔怀疑他的团队发现的沙漠物种发生了类似的孤立和物种形成过程。Hill说,这个蚱hopper属可能在更新世时期(也称为冰河时代)中有多元化。他指出,在洛矶山脉中,随着冰川后退,其栖息地转移到更高的海拔时,在高山草原的这种亚科种类可能被隔离。希尔怀疑他的团队发现的沙漠物种发生了类似的孤立和物种形成过程。
1 乔治华盛顿大学,华盛顿特区,美国。 2 加州大学伯克利分校电气工程与计算机科学系,加利福尼亚州伯克利,美国。 3 独立研究员,加利福尼亚州圣何塞,美国。 *通讯作者电子邮件:chris.tqy128@outlook.com 摘要。本文讨论了一种改进的脑肿瘤医学图像分割模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net的基础上,引入GSConv模块和ECA注意机制来提高模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更有效地提取和利用多尺度特征,同时灵活地关注重要通道,从而显著提高分割结果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过查看训练集和测试集的损失曲线,我们发现两者的损失值在第八个epoch之后都迅速下降到最低点,然后逐渐收敛并稳定下来。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统的U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势。特别是在脑肿瘤图像边缘的处理上,改进的模型可以提供更准确的分割结果。这一成果不仅提高了医学图像分析的准确性,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要意义。未来我们希望进一步探索该方法在其他类型医学图像处理中的应用潜力,推动医学影像的发展。
摘要。本研究分析了两种用于脑肿瘤检测的深度学习模型:轻量级预训练的 MobileNetV2 和将轻量级 MobileNetV2 与 VGG16 相结合的新型混合模型。目的是研究这些模型在准确性和训练时间方面的性能和效率。新的混合模型整合了两种架构的优势,利用了 MobileNetV2 的深度可分离卷积和 VGG16 的更深层特征提取功能。通过使用公开的基准脑肿瘤数据集进行实验和评估,结果表明,与独立的 MobileNetV2 模型相比,混合模型的训练准确率和测试准确率分别达到 99% 和 98%,即使在较低的 epoch 中也是如此。这种新型融合模型为增强脑肿瘤检测系统提供了一种有前途的方法,在减少训练时间和计算资源的情况下提高了准确性。
图 0.1:2023 年 6 月至 2024 年 12 月期间著名通用 AI 模型在关键基准测试中的得分。与之前的最先进水平(阴影区域)相比,o3 表现出显着提高的性能。这些基准测试是该领域对编程、抽象推理和科学推理最具挑战性的测试。对于未发布的 o3,显示公告日期;对于其他模型,显示发布日期。包括 o3 在内的一些较新的 AI 模型受益于改进的支架和测试时的更多计算。资料来源:Anthropic,2024 年;Chollet,2024 年;Chollet 等人,2025 年;Epoch AI,2024 年;Glazer 等人,2024 年;OpenAI,2024a;OpenAI,2024b;Jimenez 等人,2024 年; Jimenez 等人,2025 年。
摘要:这项工作提出了Seizft - 一种新型的癫痫发作检测框架,该框架利用机器学习使用可穿戴的Sensordot EEG数据自动检测癫痫发作。受到可预处的睡眠阶段的启发,我们的新方法采用了数据增强,有意义的特征提取和决策树的独特组合,以提高对脑电图变化的弹性,并提高概括以概括为看不见数据的能力。傅立叶变换(FT)替代物被用来增加样本量并改善标记的非塞兹和癫痫发作时期之间的平衡。为了增强模型稳定性和准确性,Seizft通过Catboost Classifier利用决策树的集合来将EEG记录的每一秒分类为癫痫发作或非癫痫发作。SEIZIT1数据集用于培训,SEIZIT2数据集用于验证和测试。使用两个主要指标:使用AINY-ROVERLAP方法(OVLP)和错误的警报(FA)速率(使用基于Epoch的评分(Epoch))评估了用于癫痫发作检测的模型性能。值得注意的是,Seizft在2023年2023年国际声学,言语和信号处理国际会议上(ICASSP)的癫痫发作检测挑战(ICASSP)的一系列最先进的癫痫发作检测算法(ICASSP)。seizft在准确的癫痫发作检测中优于最先进的黑盒模型,并最小化错误警报,总分获得了40.15的总分,在两个任务中结合了OVLP和时期,并且比下一个最佳方法的改善约为30%。Seizft的解释性是一个关键优势,因为它促进了医疗保健专业人员的信任和问责制。从Seizft提取的最预测性的癫痫发作检测特征是:三角波,四分位数范围,标准偏差,总绝对功率,Theta波,三角洲与Theta的比率,BINNED熵,Hjorth Complextity,Delta + Theta + Theta和Higuchi Fractal Fractal Ristermension。总而言之,将Seizft成功应用于可穿戴的Sensordot数据表明,它可能进行实时,连续监测的潜力,以改善个性化医学癫痫。
计算流体动力(CFD)和机器学习方法用于研究NASA型NACA 0012的热传递。已经开发了几种不同的模型,以检查层流,晶状体流量和Allmaras流对NACA 0012机翼在不同的空气动力学条件下的影响。在本文中,针对多孔模式和非孔模式的不同机翼模式讨论了高温下的温度条件。特定参数包括11.36 x 10-10 m 2的渗透率,孔隙率为0.64,惯性系数为0.37,温度范围为200 k和400K。该研究表明,温度升高可以显着增加提升到拖拉。另外,采用多孔状态和温度差异进一步有助于增强电力到拖拉系数。在调整温度时,神经网络还可以成功预测结果,尤其是在有更多情况的情况下。尽管如此,本研究使用Smoter模型评估了系统的准确性。已显示测试情况最佳性能验证的MSE,MAE和R分别为0.000314、0.0008和0.998960,在k = 3。然而,研究表明,时期值大于2000,增加了计算时间和成本而不提高准确性。这表明SMOTER模型可用于准确对测试案例进行分类;但是,对于最佳性能,不需要更高的时期值。