合作伙伴学校课程等效于下表指示圣劳伦斯大学大学生可用的课程,这些课程已获得批准满足克拉克森一年MBA课程的基础要求:
电动汽车中面向控制的电池管理应用程序的摘要,电池组的等效电路模型(ECM)提供可接受的建模精度和简单的数学方程式,以包括单元参数。但是,在实时应用中,电路参数通过改变电池的操作条件和状态不断变化,因此需要在线参数估计器。估计器必须使用适合实时处理的计算复杂性更新电池参数。本文为ECM的在线参数估计提供了一种新颖的在线降低复杂性(ORC)技术。与现有技术相比,所提出的技术提供的复杂性明显较小(因此估计时间),但没有损害准确性。我们使用基于信任区域优化(TRO)最小二(LS)方法作为提议技术中的更新算法,并使用Nissan Leaf(Pouch)细胞实验验证我们的结果,并借助标准车辆测试周期,即动态驾驶周期(DDC)和新的欧洲驾驶周期(NEDC)。