1。灵活状态表示:节点可以表示带有特征的连续坐标2。 div>连续动作:图形可以扩展到新的2D位置3。连续的欧几里得对称性:2D上的几何图是(2) - 可转化
摘要在本文中,我们旨在使用深层神经网络从多云的光学图像和对齐的合成孔径雷达(SAR)图像中恢复无云的光学图像。与以前的方法相反,我们观察到卫星图像特征通常没有首选方向。通过使网络层遵守改变输入图像的方向的几何约束,可以将此见解纳入神经座的设计中,只能改变相应的输出图像的方向,而不必影响秘密的质量或细节。我们构建了一个多模式旋转 - 等级神经网络,称为EquICR(Equivariant Cloud Removal),该网络准确地编码了此几何。在接受公共SEN12MSCR数据集接受培训时,我们观察到使用EquiCR的重建图像质量的改善,与使用深度学习无内置旋转等效性相比。有趣的是,在更困难的情况下,当云覆盖量很高或训练数据集很小时,EquiCR对基线方法的改善更大。
摘要:构建有效的模仿学习方法,使机器人能够从有限的数据中学习,并且仍然在不同的现实世界环境中概括是一个长期存在的问题。我们提出了Equibot,一种可用于机器人操纵任务学习的强大,有效且可推广的方法。我们的方法结合了SIM(3) - 等级神经网络体系结构与扩散模型。这确保了我们所学的政策对规模,轮换和翻译的变化是不变的,从而增强了它们对看不见的环境的适用性,同时保留了基于扩散的政策学习的好处,例如多种方式和鲁棒性。我们在一组6项模拟任务上显示,我们提出的方法减少了数据要求并改善对新方案的概括。在现实世界中,有10个移动操作任务的10个变体,我们表明我们的方法可以轻松地概括为每项任务中仅5分钟的人类演示的新颖对象和场景。网站:https://equi-bot.github.io/
抽象的流行表示方法鼓励在输入上应用的转换下的特征不变性。然而,在3D感知任务中,诸如对象定位和segmen的任务中,输出自然与某些转换(例如旋转)相等。使用训练前损失函数,鼓励在某些转换下的特征等同于特征,提供了强大的自学信号,同时还保留了传输特征表示之间的几何关系信息。这可以在下游任务中改善与此类转换一样的下游任务。在本文中,我们提出了一个时空的阶段性学习框架,通过共同考虑空间和时间增强。我们的实验表明,最佳性能是通过预训练的方法产生的,该方法鼓励了对翻译,缩放和平流,旋转和场景流量。对于空间增强,我们发现,根据转换,是对比度目标或按分类目标的对比度,可以产生最佳的要求。为了利用现实世界的对象变形和运动,我们考虑了顺序的LIDAR场景对,并开发出一个基于3D场景流量的新颖的均衡性目标,从而导致整体上的性能。我们表明,在许多设置中,3D对象检测的预训练方法优于现有的模棱两可的方法。
摘要 - 本文提出了一种差异几何控制方法,该方法利用了SE(3)组不变性和等效性,以提高学习机器人操纵任务中涉及与环境相互作用的可传递性。所提出的方法是基于利用最近提出的几何阻抗控制(GIC)与学习变量阻抗控制框架相结合的,在该框架中,增益计划策略是从专家辩护中以监督的学习方式培训的。几何一致的误差向量(GCEV)被馈送到神经网络以实现增益计划策略。我们证明,使用GCEV的GIC和学习表示在任意SE(3)转换(即翻译和旋转)下仍然不变。此外,我们表明,相对于空间框架表示,所提出的方法是均等的。对我们提出的控制和学习框架与配备笛卡尔错误矢量增益计划策略的著名的笛卡尔太空学习阻抗控制的比较,证实了我们所提出的方法的出色学习转移性。索引术语 - 几何阻抗控制,SE(3)等效性和剩余不变性,可变阻抗控制,接触式操纵任务
图1:提议的框架概述。该过程始于利用蛋白质氨基酸序列和配体微笑弦作为输入。构象采样过程包括迭代应用输入特征,更新残留特征并脱落等效,最终在其辅导的Cα蛋白质主链和配体配合物以及其辅导中产生了新型蛋白质序列。
大规模序列建模引发了快速的进步,现在扩展到生物学和学位。但是,建模基因组序列引入了挑战,例如需要建模远程令牌相互作用,基因组的上流区域和下游区域的影响以及DNA的反向互补性(RC)。在这里,我们提出了一个以这些挑战为动机的建筑,这些挑战在远程Mamba区域建立,并将其扩展到支持双向性的Bimamba component,并将其扩展到支持RC等值的Mambadna块。我们使用amambadna作为caduceus的ba sis,这是第一个rc equivianiant双向远程DNA语言模型的第一个家族,我们引入了预训练和精细的调整策略,产生了caduceus dna fun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-foun-dation模型。caduceus在下游基准测试上优于以前的远程模型;在具有挑战性的远程变体效果前字典任务上,caduceus超过了不利用双向方向性或均衡性的10倍较大模型的性能。代码重现我们的实验。