在冲突解决问题研究中,飞机被视为能够朝冲突解决算法所指向的任何方向飞行的单点(Alliot 等人,1992 年;Bicchi 和 Pallottino,2000 年;Clements,1990 年;Erden,2001 年;Erden,2002 年;Petrick 和 Felix,1998 年;Pappas,1997 年;Tomlin,2000 年)。这些应用基于飞机可以朝任何指令方向飞行的假设,但现实并非如此。通过使用一些简化的飞机动力学和自动驾驶仪,冲突解决研究的结果可能会更接近现实。本研究设计了一个简单的横向自动驾驶仪(Rauw,1998;Sachs,1999)用于冲突解决研究,以作为动态和引导机制之间的接口。
OK Ozer),第 26 届科学技术指标国际会议,从全球指标到本地应用,西班牙格拉纳达,2022 年 9 月 7 日至 9 日,发表于 N. Robinson-Garcia、D. Torres-Salinas 和 W. Arroyo-Machado (Eds.) 第 26 届科学技术指标国际会议 STI 2022 (sti2237) 的论文集中。https://doi.org/10.5281/zenodo.6906465 (2022 年 9 月 7 日)(差旅费由 H2020 SolarTwins 项目资助) Temel、N. U、Y. Erden Topal、B. H G. Haksevenler (2022),“法航-荷航的比较案例研究
“电信:为什么我在电话里听起来不一样?” 适合 S1-S6 的 Keith Brown 博士 电信涵盖了广泛的活动,包括:无线电、电视、电话和数据通信。不同形式的通信技术以不同的方式改变正在通信的内容。通过演示,本演讲探讨了通信系统中的一些影响因素,以及根据所使用的通信系统,声音可能会有所不同。 “ 微型机器的奇妙世界 ” 适合 S1-S6 Marc Desmulliez 教授 / Jose Marques-Hueso 博士 从 1966 年拍摄的电影“神奇旅程”到视频游戏机和手机传感器的最新进展,微型机器让科学界和公众都为之着迷。本次演讲将介绍微型机器带来的挑战和机遇,从微电子到微型医疗设备。 “ 自然启发工程:旧教训,新起点 ” 适合 S1-S4 Marc Desmulliez 教授 / Elisa Ramil Brick 女士 / Marti Verdaguer 先生 在过去的 38 亿年里,大自然为动植物的生存和繁荣提供了解决方案。人类可以从大自然中获得启发,解决原材料稀缺、气候变化、水污染和可持续性等问题。本次演讲将通过示例解释为什么大自然如此巧妙地使事物更便宜、能耗更低、可持续。讲座还将介绍工程师如何将大自然的工程原理转化为造福人类的人造产品。 “未来的太空征服者将不是人类” 适合 S1-S4 Matt Dunnigan 博士 随着我们探索太阳系外围及更远的地方,当前和未来的太空探索将越来越依赖于机器人太空探测器和着陆器的使用。本次演讲将使用国际空间站、火星着陆器等例子来描述机器人在太空中的应用,以及计划使用机器人登陆彗星和探索木星和土星的冰冻世界。 “有用的机器人” 适合 S3-S6 Mauro Dragone 博士 / Suphi Erden 博士 / Scott MacLeod 先生 / Alexandre Colle 先生 正在开发机器人来帮助长期残疾和患有痴呆症等疾病的人,并协助我们医院的外科医生和医疗保健专业人员的工作。本次演讲将介绍所有这些应用如何利用机器人技术、人工智能和物联网领域的最新进展,以及它们如何在工程师与计算机科学家、健康专家、心理学家以及有辅助生活需求的人的共同努力下得以实现。
摘要:由带有天然纤维增强的聚合物基质组成的材料称为天然纤维增强聚合物复合材料(NFRCS)。科学家最近对这些复合材料非常感兴趣,因为它们比常规合成纤维增强的聚合物复合材料提供了改进的性能,其成本较低,并且具有环境优势。然而,包括γ辐射暴露在内的几个因素和纳米颗粒的添加会影响NFRC的性质。本综述将集中于伽马辐射和纳米颗粒对NFRC的机械,热和防水特性的影响。为了帮助创建新的和改进的NFRC用于不同的应用,本综述旨在通过促进纤维和矩阵之间的更好键合,以增强复合材料的整体性能,从而对NFRCS的性质以及伽马射线和纳米颗粒的影响提供全面的了解。关键词:天然纤维,聚合物矩阵,复合材料的性能,伽马射线,纳米颗粒1介绍,一般而言,复合材料可以描述为在微观上至少两种不同材料的异质混合物,具有与其组成部分不同的新型特性,通常具有几乎同质的结构,并且具有几乎同质的结构。可以根据机会结合这种属性混合的机会来量身定制复合材料的质量以满足所需应用的需求(Erden&Ho,2017)。复合材料的机械性能受到纤维结构的极大影响。此外,许多部门目前都在寻找复合材料的新型特性,例如可更新性,几乎没有环境效应和负担能力。天然纤维增强复合材料的优势比传统材料和合成纤维增强的复合材料导致这些领域的研究和创新增加(Neto等,2022)。此外,天然纤维价格便宜,密度低,并且具有许多独特的特征。与其他增强纤维不同,它们是柔性,无毒,无育和生物降解的。此外,它们很容易访问,其独特特性与用作增强剂的其他纤维的特征相似(Aravindh等,2022)。天然植物材料中发现的纤维素纤维由无定形木质素和一些螺旋纤维素微纤维的基质制成。木质素有助于将水保持在纤维内并赋予茎的强度以承受风和重力,这是防御生物学攻击的防御。半纤维素是纤维素和木质素之间的兼容剂,是天然纤维的组成部分。图1描绘了天然纤维的结构(M. K. Gupta&Srivastava,2016年)。
特邀演讲 OLIVER GUTFLEISCH (289) 2025 年材料日主题为“能源材料”,苏黎世联邦理工学院,2025 年 5 月 7 日 (288) MRS 研讨会:可持续冷却的固体材料:热量效应和设备,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (287) MRS 研讨会:新兴技术中的关键原材料,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (286) 绿色能源的可持续磁体,2025 年 TMS 年会磁学和磁性材料进展研讨会,美国内华达州拉斯维加斯,2025 年 3 月 23 日至 27 日 (285) 高性能磁性材料 – Schlüsselwerkstoffe für die Energietransformation ,42. Hagener Symposium 2024 Pulvermetallurgie,哈根,2024 年 11 月 28 日 - 29 日 (284) 用于高效能源、运输和冷却应用的先进磁性材料,Physikalisches Kolloquium,奥格斯堡大学,2024 年 11 月 18 日 (283) 用于高效能源、运输和冷却应用的先进磁性材料,中国科学院物理研究所中关村论坛,北京,2024 年 8 月 27 日 (282) 用于能源转换、传输和冷却应用的磁性材料的磁滞设计,德中磁学研讨会,北京,中国,2024 年 8 月 25 日 (281) 粉末和粉末基加工的 Ni-Mn-Sn 多热 Heusler 合金中的马氏体转变和热效应,Thermag 2024,第 10 届 IIR 热冷却与热材料应用会议,中国包头,2024 年 8 月 21 日至 24 日 (280) 用于柔性传感和执行器的可持续磁性材料,ICM 2024 博洛尼亚,焦点研讨会:磁性结构中的应变、纹理和弯曲,2024 年 7 月 1 日至 5 日 (279) 用于柔性传感和执行器的可持续磁性材料,E-MRS 2024 年春季会议 - 研讨会 R“非常规电子和可持续柔性传感技术的进展”,2024 年 5 月 28 日 (278) 高性能永磁体领域的最新开发,VDA 汽车工业协会,AK 循环经济/AK 电磁兼容,2024 年 5 月 7 日,阿尔策瑙 (277) 永磁体和磁热材料- 从基础到能源应用(由 K. Skokov 博士讲授),第 3 届 EMFL 学校 - 高磁场科学,德累斯顿,2024 年 4 月 15 日 - 19 日(276) 磁性材料宏观和微观功能特性的关联探测(由 A. Aubert 博士讲授),意大利-德国 WE-Heraeus 研讨会“关联材料表征的前沿:样品、技术、仪器和数据管理”,2024 年 4 月 2 日至 4 月 5 日。(275) 电动汽车和风能用永磁体的可持续性:稀土的减少、替代和回收,IRTC 会议 2024 可持续未来的原材料,意大利都灵,2024 年 2 月 21-23 日(274) 磁性材料在能源转型中的作用,第八届意大利磁学协会 (AIMAGN) 会议 Magnet-2024,2024 年 2 月 7-9 日,米兰 (273) 用于利用磁滞冷却循环的多热材料,德累斯顿磁热日,2023 年 11 月 13-14 日 (272) 未来磁铁的可持续性及其应用,磁性材料和应用 2023,英国磁学学会,2023 年 11 月 7-9 日,哈瑙 (271) 电动汽车和风力发电永磁体的可持续性:稀土的减少、替代和回收,acatech - 专题会议“材料 - 有价值的材料 - 原材料。循环材料系统对弹性和可持续原材料供应的贡献”,2023 年 11 月 7 日,慕尼黑 (270) 电动汽车和风力发电用永磁体的可持续性:稀土的减少、替代和回收,第 9 届鲁尔循环经济功能材料研讨会,2023 年 10 月 17 日,杜伊斯堡 (269) 未来永磁体的可持续性及其应用,REPM 2023,英国伯明翰,