摘要。人为因素和人体工程学长期以来一直被标准化为同义词,并且在设计各种与人有关的系统方面具有巨大潜力。然而,一些观点对这些术语进行了精确区分。已经进行了大量研究,试图理解人为因素和人体工程学的概念。在任何研究中使用每个术语以了解人类如何与周围环境互动之前,必须清楚地理解每个术语的含义。因此,本文旨在回顾人为因素和人体工程学的定义。早在 1970 年的英文文章和书籍都是从 Taylor and Francis Online、Google Scholar 和 Science Direct 汇编而来的。文章选择使用的关键词是人为因素、人为因素工程、人体工程学、工业人体工程学、评论、定义、差异和风险因素。还提供了与每个术语相关的风险模型,以便对其有更多了解。根据文献综述的结果,探讨了菠萝种植园中的人为因素和人体工程学问题,并进行了相应的分类。
ICAO 附件 8 IVB 规定“在设计直升机时,应考虑人体工程学因素,包括易用性和防止无意误用、可达性、机组工作环境、驾驶舱标准化、可维护性,还应考虑机组操作环境,包括噪音和振动等航空医学因素的影响以及正常飞行期间物理力的影响。”以下部分提供了直升机飞行员社区对良好驾驶舱设计的看法。
我们很荣幸能够主持 SELF 2017 大会,该大会是法语人体工程学学会大会未来的一部分,我们提出了创新,特别是在科学政策层面。这次名为“新公式”的试点大会体现了SELF对人体工程学以及与人体工程学接近的学科的研究和实践多样性开放的愿望。其目的是将人体工程学专家及其合作者聚集在一起,使大会成为一个开放、定期的场所,每年召开一次,通过将其划分为每年举办一次的主题,并构成一个共同的根据。代表大会将保留其地方特色,同时以地方委员会确定的共同主线阐明永恒主题。SELF 图卢兹 2017 大会正在利用 Resact 试验该项目。
TRIM-S 的四个维度(精力、好心情、动力和放松)显示出特定于条件的反应模式,与回答格式大不相同。此外,对整体舒适度的评级也显示出特定于条件的反应,与回答格式大不相同。触摸健康时 HR 较高,无聊时 HR 较低。HRV 高频相对功率 (HF%) 与无聊和放松特别相关。HRV 极低频相对功率 (VLF%) 与条件成反比,与 HRV 低频相对功率 (LF%) 相比,与情绪激活具有一定的敏感性,在 VLF% 中观察到TRIM-S 的激活相关维度、精力和放松与心血管活动有关,但动力和情绪在主观反应水平上更敏感地通过评级进行评估,与回答格式大不相同。
人体测量分析对于人体工程学设计至关重要。然而,在多民族社会中,由于没有公布人体测量数据,人体工程学设计是一项严峻的挑战。为了解决这一差距,本研究专注于开发此类数据,这些数据可以为工作空间和设备的几何设计提供信息。这项研究针对的是工业领域选定工作场所的员工。总共记录了七十九 (79) 种志愿者的不同身体尺寸,这些尺寸基于预定的标志。志愿者在坐姿和站姿时手动进行测量。结果提供了纳米比亚劳动力的人体测量特征样本,可以作为工作空间和设备设计的基础。这些数据与美国的数据进行了比较,美国是设备的常见市场来源(尤其是在采矿业)。这些结果将有助于制定纳米比亚标准的一部分,该标准将纳米比亚工业的人体工程学指南纳入其中。最后,本研究表明需要对所有工业部门的所有工人进行更全面的人体测量调查。本研究成功地建立了更广泛的人体测量调查应以此为基础的指南和方法。关键词 人体测量分析、人体工程学设计、实证研究、纳米比亚 1.简介 为了有效和适当的人体工程学工程设计,相关的人体测量数据至关重要。因此,为此目的开发此类数据势在必行。开发大量人体测量数据至关重要,这些数据可以为工作空间和设备的几何设计提供信息(Del Prado-Lu,2007;Robertson 等人,2008;这将对心理社会工作环境、肌肉骨骼健康(Schneider,Irastorza,2010;Golubovich 等人,2013;Denis 等人,2008)、工人的工作效率和生产力(Robertson 等人,2008;Garcia-Herrero 等人,2012;Botha 和 Bridger,1998)产生影响。但是,有些工作场所是特定于特定环境的,这是由当地人口的人体测量决定的。例如,飞机座椅、拖拉机驾驶室、办公家具和控制面板的设计可能必然需要特定于特定环境的测量特定的地方民族。这些环境的特殊要求可能为某些部件的本地制造提供机会。尽管如此,在某些情况下,人体测量数据很少,甚至不存在。此外,在一个独特的多民族社会中,可能很难为工程设计开发通用的人体测量数据。这是纳米比亚的独特情况。为解决这一差距,本研究的目的是开发人体测量数据,这些数据可以为纳米比亚工作空间和设备的几何设计提供信息。因此,这项研究涵盖了纳米比亚不同地区的选定工作场所。在这一努力中,研究考虑了两个目标:
1.Kim IJ (2015) 当代人体工程学中的知识差距和研究挑战。J Ergon 5: 2 2.Kim IJ (2016) 食品工业中的安全与健康实践和人体工程学干预。J Ergon 6: 1.3.Kim IJ (2016) 农业工业中的事故和事故预防:人体工程学参与。J Ergon 6: 3.4.Kim IJ (2016) 石油和天然气工业中职业安全与健康改进的人体工程学参与。J Ergon 6: 3.5.Hansen CP (1988) 事故涉及员工的性格特征。J Bus Psychol 2: 346-365.6.Hansen CP (1989) 事故、个人简历、性格和认知因素之间关系的因果模型。J Appl Psychol 74: 81-90.7.Allahyari T、Rangi NH、Khosravi Y、Zayeri F (2011) 开发和评估一种用于评估工作中认知失败的新问卷。Int J Occ Hyg 3: 6-11.8.Arthur W, Barrett GV (1991) Alexander RA。车辆事故预测:荟萃分析。Hum Perform 4: 89-105。9.Larson GE, Merritt CR (1991) 事故可以预测吗?认知失败问卷的实证检验。Appl Psychol 40: 37-45。10.O’Hare D, Wiggins M, Batt R, Morrison D (1994) 飞机事故调查的认知失败分析。Ergon 37: 1855-1869。11.Larson GE、Alderton DL、Neideffer M、Underhill E (1997) 认知失败问卷的维度和相关性的进一步证据。Br J Psychol 88: 29-38。12.Wadsworth EJ、Simpson SA、Moss SC、Smith AP (2003) 布里斯托尔压力与健康研究:工作中的事故、轻伤和认知失败。Occup Med (Lond) 53: 392-397。13.Wallace JC, Chen G (2005) 开发和验证特定于工作的
12.1 无需会议即可通过的决议 13 12.2 决议的签署 13 12.3 股东大会的法定人数 13 12.4 延期股东大会的法定人数 14 12.5 股东代表 14 12.6 主席的任命 14 12.7 主席的权力 14 12.8 会议延期 14 12.9 举手表决 15 12.10 要求投票 15 12.11 股东的投票权 16 12.12 联名股东投票 16 12.13 未付催款时的投票权 16 12.14 主席在股东大会上的投票 16 12.15 对投票人资格的异议 16
总部位于堪萨斯州独立市。LockNClimb ® 设计和制造符合人体工程学的安全梯,以满足现场 MRO 技术人员的严格要求。“我们的梯子是由机械师设计的,供机械师使用,”LockNClimb 总裁兼首席执行官 Jeffrey A. Green 说道,他一年中大部分时间都在飞越美国,与主要商业航空公司、美国军事航空基地和公务机维护设施的 MRO 服务人员和安全主管会面。“航空公司在遇到问题时会打电话给我们,通常是在梯子坠落事故或背部受伤之后,”Green 说道。“令人惊讶的是,尽管当今航空业拥有所有现代技术和安全实践,但一些场所仍在使用几十年前的梯子设计。我们的使命是将科学的人体工程学设计融入
多维控件 ................................................................................................................150 大小 ....................................................................................................................................152 形状 ....................................................................................................................................154 控件空间 ................................................................................................................................154 标签 ....................................................................................................................................155 阻力 ....................................................................................................................................155 控制面板 ................................................................................................................................156
第 1 章 人体工程学设计导览 ................................................................................................................1 关于本章 ................................................................................................................................................1 简介 ................................................................................................................................................1 什么是人体工程学设计? ......................................................................................................................3 以人为本的设计 .............................................................................................................................9 军事装备设计 ......................................................................................................................................13 人体工程学标准 ......................................................................................................................................15 人体表现模型 .............................................................................................................................16