本项目探讨了如何将流量控制传输协议(SCTP)的用户空间实现整合到Erlang中如何扩大电信提供商的部署选项。它解决了现代电信设置中传统基于内核的SCTP实现所带来的挑战。随着电信行业越来越多地采用了用于服务部署的容器技术,Linux SCTP实施的限制(例如,违反错误的错误,过时的标准符合性)和与TCP或UDP相比的性能差 - 很明显。需要使用应用程序发货的可靠版本的SCTP实现。移动艺术提出了该项目,以满足其客户的需求,他们更喜欢在集装箱环境中部署应用程序,而不是维护单独的虚拟机。没有内核访问,控制SCTP版本是不可能的。该项目通过使用用户空间库USRSCTP将SCTP集成到ERLANG中,从而引入了新的解决方案。集成利用Erlang的本机实现功能(NIF)将C代码与USRSCTP库链接。关键结果包括将USRSCTP成功集成到Erlang中,从而对现有的Erlang SCTP实现进行了改进。虽然该项目展示了用户空间SCTP集成的可行性和好处,但它还突出了实现强大解决方案的复杂性。这些挑战强调了扩展SCTP在集装箱电信服务中的可用性所需的努力。这项工作表明,电信的软件开发发生了变化:随着现代技术超过内核开发,用户空间实现为以前的内核托管功能提供了更大的灵活性和可靠性。
5.6 语音系统的 Erlang 方程 ......................................................................................................53 5.7 企业业务服务关键质量指标 ..............................................................................................55 5.7.1 语音服务...............................................................................................................55 5.7.2 视频电话会议.......................................................................................................58 5.7.3 流媒体视频/音频.......................................................................................................59 5.7.4 广播视频.......................................................................................................60 5.7.5 遥测.......................................................................................................................61 5.7.6 交易.......................................................................................................................62 5.7.7 电子邮件/消息....................................................................................................63 5.7.8 办公自动化....................................................................................................................64 5.7.9 帮助台....................................................................................................................65 5.7.10 远程办公....................................................................................................................67 5.7.11
Onyedikachi Chioma Okoro 国立航空大学/持续适航系/乌克兰基辅,03058 电子邮件:okorokachi7@gmail.com Maksym Zaliskyi 国立航空大学/电信和无线电电子系统系/乌克兰基辅,03058 电子邮件:maximus2812@ukr.net Serhii Dmytriiev 国立航空大学/持续适航系/乌克兰基辅,03058 电子邮件:sad@nau.edu.ua Oleksandr Solomentsev 国立航空大学/电信和无线电电子系统系/乌克兰基辅,03058 电子邮件:avsolomentsev@ukr.net Oksana Sribna 国立航空大学飞行学院/飞行安全系/乌克兰克罗皮夫尼茨基,25005电子邮件:oksana-kd@ukr.net 收到日期:2021 年 7 月 26 日;接受日期:2021 年 11 月 12 日;发表日期:2022 年 4 月 8 日 摘要:维护约占飞机运营成本的 20%;高于燃料、机组人员、导航和着陆费用相关的成本。维护成本的很大一部分归因于飞机部件和系统的故障。这些故障是随机的,提供了一个数据库,可以进一步分析该数据库以帮助决策进行维护优化。本文开发了可用于优化飞机系统维护任务间隔的随机数学模型。本研究的初始数据是诊断变量和可靠性参数,它们构成了选择的基础