我们已经开发了基于神经网络的管道,以直接从X射线中的光子信息中直接从已知的红移来估计星系簇的质量。我们的神经网络是使用对eRosita观察的模拟的监督学习进行了培训的,重点是最终的赤道深度调查(EFEDS)。我们使用了已修改的卷积神经网络,以包括有关集群的其他信息,尤其是其红移。与现有作品相比,我们利用了包括背景和点源的模拟来开发一种直接适用于延长质量范围的观察性吞噬数据的工具 - 从组尺寸的光环到质量的大量群集到10 13 m 使用这种方法,我们能够在第一次提供来自Spectrum-Roentgen-Gamma / Erosita观察的观察到的EFEDS群集样品的神经网络质量估计,并且我们发现具有弱慢量校准质量的一致性。 在此测量中,我们没有使用弱效率信息,并且仅使用了以前的群集质量信息,该信息用于校准模拟中的群集特性。 与模拟数据相比,我们观察到相对于亮度和基于计数速率的比例关系的散射减少。 我们还对其他即将到来的Erosita All-Sky调查观察的申请发表评论。使用这种方法,我们能够在第一次提供来自Spectrum-Roentgen-Gamma / Erosita观察的观察到的EFEDS群集样品的神经网络质量估计,并且我们发现具有弱慢量校准质量的一致性。在此测量中,我们没有使用弱效率信息,并且仅使用了以前的群集质量信息,该信息用于校准模拟中的群集特性。与模拟数据相比,我们观察到相对于亮度和基于计数速率的比例关系的散射减少。我们还对其他即将到来的Erosita All-Sky调查观察的申请发表评论。
上下文。SRG/EROSITA全套调查(ERASSS)结合了完整的天空覆盖范围的优点和电荷夫妇设备提供的能量分辨率,并提供了迄今为止漫射软X射线背景(SXRB)的最整体和最详细的视图。当太阳能电荷交换排放最小,提供SXRB的最清晰的视图时,第一个ERASS(ERASS1)以太阳能最小值完成。目标。我们旨在从西部银半球中SXRB的每个组成部分中提取空间和光谱信息,重点是局部热气泡(LHB)。方法。,我们通过将天空分为相等的信号到噪声箱,从西部银半球的几乎所有方向提取并分析了Erass1光谱。我们将所有垃圾箱装有已知背景成分的固定光谱模板。结果。我们发现LHB的温度在高纬度(| b |> 30°)处表现出南北二分法,南方更热,平均温度为Kt = 121。8±0。6 eV,北部为kt = 100。8±0。5 eV。 在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。 LHB发射度量(EM LHB)朝着银河杆近似增强。 EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。 特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。 这可能表明LHB向高银河纬度开放。5 eV。在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。LHB发射度量(EM LHB)朝着银河杆近似增强。EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。这可能表明LHB向高银河纬度开放。假设恒定密度,我们还通过EM LHB构建了三维LHB模型。LHB的平均热压为P热 / K = 10 100 + 1200 - 1500 cm-3 K,值低于典型的超新星残留物和风吹出的气泡。
