人类通过感知和应对错误来实现高效的行为。错误相关电位 (ErrP) 是在感知错误时发生的电生理反应。有人提出利用 ErrP 来提高脑机接口 (BCI) 的准确性,利用大脑的自然错误检测过程来提高系统性能。然而,外部和环境因素对 ErrP 可检测性的影响仍然不太清楚,特别是在涉及 BCI 操作和感觉运动控制的多任务场景中。在此,我们假设感觉运动控制的困难会导致多任务处理中的神经资源分散,从而导致 ErrP 特征的减少。为了检验这一点,我们进行了一项实验,其中指示参与者将球保持在板上的指定区域内,同时尝试通过运动想象控制显示屏上的光标。BCI 以 30% 的随机概率提供错误反馈。根据感觉运动控制的难度,我们采用了三种场景——无球(单任务)、轻量球(简单任务)和重量球(困难任务)——来描述 ErrP。此外,为了研究多任务对 ErrP-BCI 性能的影响,我们离线分析了单次试验分类准确度。与我们的假设相反,改变感觉运动控制的难度不会导致 ErrP 特征发生显著变化。然而,多任务会显著影响 ErrP 分类准确度。事后分析显示,在单任务 ErrP 上训练的分类器在困难任务场景下准确度降低。据我们所知,这项研究是首次在离线框架内研究在涉及感觉运动控制和 BCI 操作的多任务环境中 ErrP 是如何被调节的。尽管 ErrP 特征保持不变,但观察到的准确度变化表明,在实现基于 ErrP 的实时 BCI 之前,需要设计考虑任务负荷的分类器。
摘要 — 脑机接口 (BCI) 允许从大脑到外部应用程序直接通信,以自动检测认知过程,例如错误识别。错误相关电位 (ErrPs) 是当一个人犯下或观察到错误事件时引发的一种特殊大脑信号。然而,由于大脑和记录设备的噪声特性,ErrPs 会因各种其他大脑信号、生物噪声和外部噪声的组合而有所不同,这使得 ErrP 的分类成为一个不简单的问题。最近的研究揭示了导致 ErrP 变化的特定认知过程,例如意识、体现和可预测性。在本文中,我们探索了在通过改变给定任务的意识和体现水平而生成的不同 ErrP 变化数据集上进行训练时分类器可迁移性的性能。特别是,我们研究了当由相似和不同的任务引发时观察性和交互性 ErrP 类别之间的转移。我们的实证结果从数据角度对 ErrP 可转移性问题进行了探索性分析。
摘要 - 近年来,在“人类机器人相互作用”(HRI)的背景下,与错误相关电位(ERRP)的研究是一种与事件相关的电位(EEG)分析(EEG)分析中使用的特定事件相关电位(ERP),它在开发可能学习的Robotic Pros方面越来越引起人们的关注,从而可以学习使用用户的需求和调整时间特定时间。这项工作旨在开发一种创新的方法来离线分类ERRP。此新方法使用称为检测图(用于预测诊断)的参数来识别电势(ERRP)。使用不同的EEG数据集进行了分析,该数据集已预处理。对检测图进行计算,分析,并与文献中已经知道的经典分类方法进行了比较。索引术语 - ERRP,Hjorth的参数,分类,HRI
错误相关电位(ERRP)是与错误处理相关的神经生理信号。在过去的三十年中有很多情况下,在许多情况下报告了它们是生成的,即当一个主题认为他/她/她/她已经犯了错误并在选择反应时间范式中立即识别出来时,当主体会在不知道是否出错的情况下,当主体的反馈中,当主体的反馈是错误的(反馈erfack erfect of persect)时,当主体会在选择反馈的情况下(“响应errp”),或者是“反馈”或“智能”的反馈()当反馈不是预期的反馈时,与大脑计算机界面(BCI)的相互作用(“相互作用errp”)。ERRP的组件出现在500毫秒的时间窗口中,并且在大脑中自然而然地引起了用户的明确意图。因此,其自动检测可以以无数的方式实时使用。鉴于错误监测社会互动,行为,人机相互作用和认知学习的重要性,人们开始认识到,通过机器学习自动检测错误信号的可能性可能与许多现实生活中的临床和非临床环境中的许多现实应用有关。ERRP已经被用作多种应用程序中的一种概念,用于检测和纠正BCI选择以提高可靠性,随着时间的推移调整BCI系统或使人工智能系统学习。此外,近年来,人们对基于错误监测错误监测的临床应用中基于ERRP的方法的整合越来越感兴趣。虽然错误信号的实际使用仍处于起步阶段,并且是一个开放的研究领域,但为了了解其起源和潜在的神经机制,还有很多知识。Aiming at contributing to this research field, the special Research Topic on challenges and applications of ErrPs was launched in Frontiers in Human Neuroscience – Brain-Computer Interfaces, which brought together inputs from clinical and basic neuroscience, psychology, and engineering, presenting new neurophysiological insights about error signals, novel applications, both in terms of original contributions and literature reviews.
我们考虑深度强化学习 (DRL) 领域的以下核心问题:如何使用隐式人类反馈来加速和优化 DRL 算法的训练?最先进的方法依赖于任何明确提供的人为反馈,需要人类的主动参与(例如,专家标记、演示等)。在这项工作中,我们研究了一种替代范式,其中非专家人类正在默默观察(和评估)与环境交互的代理。通过将电极放在人的头皮上并监测所谓的事件相关电位,人类对代理行为的内在反应被感知为隐式反馈。然后使用隐式反馈来增强代理在 RL 任务中的学习。我们开发了一个系统来获取并准确解码隐式人类反馈,特别是 Atari 类型环境中的状态-动作对的错误相关事件电位 (ErrP)。作为一项基线贡献,我们证明了使用脑电图 (EEG) 帽捕获人类观察者观察代理学习玩几种不同 Atari 游戏的错误潜力的可行性,然后适当地解码信号并将其用作 DRL 算法的辅助奖励函数,旨在加速其对游戏的学习。在此基础上,我们在工作中做出了以下新颖的贡献:(i)我们认为 ErrP 的定义可以在不同的环境中推广;具体来说,我们表明观察者的 ErrP 可以针对特定游戏进行学习,并且该定义可以按原样用于另一个游戏,而无需重新学习错误潜力。(ii)为了提高 ErrP 数据效率,我们提出了一个新的学习框架,将 DRL 的最新进展结合到基于 ErrP 的反馈系统中,允许人类仅在 RL 代理训练开始之前提供隐式反馈。 (iii)最后,我们将基于隐式人类反馈(通过 ErrP)的 RL 扩展到相当复杂的环境(游戏),并通过合成和真实用户实验证明了我们的方法的重要性。
摘要:当人们的期望与实际结果不一致时,就会发生与错误相关的电位(ERRP)。当人类与BCI相互作用时,准确检测ERRP是改善这些BCI系统的关键。在本文中,我们提出了一种使用2D卷积神经网络的多通道方法,用于错误相关的潜在检测。多个通道分类器已集成以做出最终决策。特别是,来自前扣带回皮层(ACC)的每个1D EEG信号都转化为2D波形图像。然后,提出了一个名为基于注意力的卷积神经网络(AT-CNN)的模型来对其进行分类。此外,我们提出了一种多通道集合方法,以有效整合每个通道分类器的决策。我们提出的整体方法可以学习每个通道和标签之间的非线性关系,该方法比大多数投票集合方法获得了5.27%的精度。我们进行了一个新的实验,并在监视错误相关的潜在数据集和数据集上验证了我们提出的方法。使用本文提出的方法,准确性,灵敏度和特定的林为86.46%,72.46%和90.17%。结果表明,本文提出的AT-CNNS-2D可以有效地提高ERRP分类的准确性,并为研究ERRP脑分配器界面的分类提供了新的想法。
误差相关电位 (ErrPs) 已被提议用于设计自适应脑机接口 (BCIs)。因此,必须解码 ErrPs。本研究的目的是评估在涉及运动执行 (ME) 和想象 (MI) 的 BCI 范式中使用不同特征类型和分类器组合对 ErrP 进行解码。15 名健康受试者进行了 510 次 (ME) 和 390 次 (MI) 右/左腕伸展和足背屈试验。假 BCI 反馈的准确率为 80% (ME) 和 70% (MI)。记录连续 EEG 并分为 ErrP 和非 ErrP 时期。提取时间、频谱、离散小波变换 (DWT) 边缘和模板匹配特征,并使用线性判别分析、支持向量机和随机森林分类器对所有特征类型组合进行分类。在 ME 和 MI 范式中都引出了 ErrPs,平均分类准确率明显高于偶然水平。使用时间特征和随机森林分类的时间+DWT特征组合获得了最高平均分类准确率;ME和MI分别为89±9%和83±9%。这些结果通常表明,在检测ErrP时应使用时间特征,但受试者之间存在很大的差异,这意味着应得出用户特定的特征以最大限度地提高性能。
摘要 - 与错误相关的电位(ERRP)是事件与事件相关的电位(ERP),这是由于实验参与者在任务性能过程中对错误的识别所引起的。错误已被用于用于脑部计算机界面(BCIS),以检测和纠正错误,并在线解码算法。基于Riemannian几何学的特征提取和分类是BCI的一种新方法,在一系列实验范式中显示出良好的性能,但尚未应用于ERRP的分类。在这里,我们描述了一个实验,该实验引起了执行视觉歧视任务的七个正常参与者的错误。在每个试验中提供了音频反馈。我们使用多通道脑电图(EEG)记录来对ERRP进行分类(成功/失败),将基于Riemannian几何的方法与计算时间点特征的传统方法进行了比较。总体而言,Riemannian方法的表现优于传统方法(78.2%对75.9%的精度,p <0.05);在七个参与者中,有三名在统计学上是显着的(p <0.05)。这些结果表明,Riemannian方法更好地捕获了反馈引用的错误,并且可能在BCI中应用于错误检测和校正。
摘要 目的。脑机接口 (BCI) 允许感觉运动障碍的受试者与环境互动。依赖于事件相关电位 (ERP) 等脑电信号的非侵入式 BCI 已被证实是时空分辨率和患者影响之间的可靠折衷,但由于便携性和多功能性而受到限制,因此无法广泛应用。在这里,我们描述了一种使用消费级便携式耳机脑电图 Emotiv EPOC + 的深度学习增强误差相关电位 (ErrP) 辨别 BCI。方法。我们在视觉反馈任务中记录并辨别了 14 名受试者的在线和在线 ErrP。主要结果:我们实现了高达 81% 的在线辨别准确率,与使用生成对抗网络或训练数据和极简计算资源的内在模式函数增强进行深度学习获得的准确率相当。意义。我们的 BCI 模型有可能将 BCI 的范围扩展到更便携、人工智能增强、更高效的接口,从而加速这些设备在科学实验室受控环境之外的常规部署。
在审核申请时,CDA 将优先考虑那些能够应对欠发达地区的社会和经济挑战的申请;那些能够促进妇女、青年和残疾人的利益和参与的申请;那些能够创造和保留就业机会的申请;那些符合新民主党和经济重建与复苏计划 (ERRP) 中规定的政府优先事项的申请。申请人还需要证明他们具备管理该计划所需的能力(即人员、技能、经验、系统)。