09:00 - 09:25新颖的基于回收的多元醇提升B ar,以挑衅的聚氨酯粘合剂cargill; Be-Gouda Erwin Honcoop摘要:随着行业转向可持续原材料,对可回收材料的需求正在上升。响应,Cargill重新设计了其多元元产品线,引入了最多包含专门用于粘合剂应用的100%再生内容的产品。这些晚期多元醇在聚氨酯粘合剂中既具有耐用性和性能。它们是由从天然油中产生的回收塑料和二氧化糖制成的,导致具有晶体结构的液态醇,可增强对钢和铝的粘附,同时保持柔韧性。生物基二肽和多元醇的碳氢化合物组成提供了驱动性以及强度和伸长率的平衡组合。此外,在这些创新的多元醇中的再生和生物基材料的整合产生了一种独特的配方,可提供出色的水解,热氧化和耐化学性,使其非常适合苛刻的应用程序,例如密封剂,运动服,运动服和自动动力组件。_______________________________________________________________________________________
15 资料来源:Francisco M De La Vega、Shimul Chowdhury、Barry Moore、Erwin Frise、Jeanette McCarthy、Edgar Javier Hernandez、Terence Wong、Kiely James、Lucia Guidugli、Pankaj B Agrawal、Casie A Genetti、Catherine A Brownstein、 Alan H Beggs、Britt-Sabina Löscher、Andre Franke、Braden Boone、Shawn E Levy、Katrin Õunap、Sander Pajusalu、Matt Huentelman、Keri Ramsey、Marcus Naymik、Vinodh Narayanan、Narayanan Veeraraghavan、Paul Billings、Martin G Reese、Mark Yandell和Stephen F Kingsmore,“人工智能可对罕见遗传病进行全面基因组解释并提出候选诊断方案”(Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases),PMCID: PMC8515723,PubMed Central生物医学和生命科学数据库,美国国立卫生研究院(NIH),美国国家医学图书馆(NLM),2021年10月14日
我一直喜欢写关于科学活动脱颖而出的人,我很幸运见面。 div>我在他的一天中与诺贝尔医学奖的罗伯特·富斯乔特(Robert Furschott)和埃尔文·尼赫(Erwin Neher)一起,与TeófiloHernando和Otto Krayer或Sada Kirpekar和Carlos Belmonte一起做了。 div>现在,我想建立一个与纪念性课程“TeófiloHernando”有关的经验的故事,我们每年在春季在马德里大学自主大学医学学院宏伟的大会大厅中庆祝。 div>这是来自阿利坎特大学(University of Alicante)的杰出科学家弗朗西斯科·马丁内斯·莫吉卡(FranciscoMartínezMojica),他教授了本系列的第27堂课,这让人想起了现代西班牙药理学的进步TeófiloHernando的形象。 div>他的演讲的暗示性头衔打开了有前途的观点:“ CRISPR的限制:谁将大门戴上CAS?” div>
成员和角色: Sherry Adrian,社会科学学院 SPC 代表(2020 年秋季) Gage Bausman,学生会 SPC 学生代表(2020 年秋季) Kalli Caldwell,学生会 SPC 学生代表(2021 年春季) Craig Erwin,财务与行政副总裁(当然成员) Lois Ferrari,美术学院 SPC 代表 Alisa Gaunder,学院院长(当然成员) Kellie Henderson,多元化与社会公正联盟学生代表 Alison Marr,自然科学学院 SPC 代表 Kendall Richards,学院副院长(当然成员;有发言权,无投票权) Heath Roberie,财务规划与分析经理(当然成员;有发言权,无投票权) Andy Ross,社会科学学院 SPC 代表(2021 年春季) Paul Secord,大学关系副总裁(当然成员) Jennifer Smull,学术支持人员代表 SPC Ronnye Vargas Stidvent,董事会代表 Derek Timourian,学生生活人员代表 SPC Natasha Williams,机构研究与效能主任(当然代表;发言权,无表决权)Miguel Zorrilla,校友会代表
摘要。我们为受路易斯·德·布罗格利(Louis de Broglie)的双重分解理论启发的量子力学提出了解释框架。原理是将量子系统的演变分解为两个波函数:与其质量中心相对应的外波函数以及其他宏观自由度的演变,以及对应于其内部变量在中心中心系统中内部变量演变的内部波函数。这两个波函数将具有不同的含义和解释。外波函数“试验”量子系统的质量中心:它对应于de Broglie Pilot Wave。对于内部波函数,我们主张1927年在Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数的模块的平方与其在太空中的电荷密度相对应。Résumé。nous提议une delaMécaniquedelaMécaniquequi s'inspire de lathéoriede la doul double Solution de Louis de Broglie。Le principe est de considérer l'évolution d'un sys- tème quantique sous la forme de deux fonctions d'onde : une fonction d'onde externe correspondant à l'évolution de son centre de masse et de ces autres degrés de liberté macroscopique, et une fonction d'onde interne correspondant à l'évolutionde ses变量实习生dans leréférentieldu Center de Masse。ces deux fonctions d'Onde vont vont avoir des ves des desuttations di a vientations。la fonction d'Onde externe pilote le Center de Masse dusystèmeQuantique:Elle sossection use sosectionunde unde unde pilote de louis de louis de Broglie。对于内部波函数,我们捍卫了ErwinSchrödinger在1927年Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数模块的平方与其在太空中的负载密度相对应。
摘要 从其看似非直观和令人费解的性质(在众多类似 EPR 的思想实验中表现得最为明显)到其在量子技术中几乎无处不在的存在,纠缠是现代量子物理学的核心。纠缠由埃尔温·薛定谔在近一个世纪前首次提出,一直是量子力学中最迷人的想法之一。在这里,我们试图解释是什么让纠缠与任何经典现象有着根本的不同。为此,我们从纠缠的历史概述开始,讨论了几个隐变量模型,这些模型旨在提供经典解释并揭开量子纠缠的神秘面纱。我们讨论了一些量子态违反的不等式和界限,从而伪造了一些经典隐变量理论的存在。我们还讨论了一些令人兴奋的纠缠表现形式,例如 N00N 状态和不可分离的单粒子状态。最后,我们讨论了一些关于量子关联的当代结果,并对量子纠缠的研究进行了展望。
Emmanuelt Le Chatelier 1 *, Trine Nielsen 2 *, Junjie Qin 3 *, Edi Prifti 1 *, Falk Hildebrand 4.5, Gwen Falony 4.5, Mathieu Almeida 1, Manimozhiyan Arumugam 2,3,6, Jean-Michel Batto 1, Sanannedo 1, Sanannedo 1, Sanannedo 1, San-Kennedo 1,Sannedo 1; 3.7,Kristoffer Burgdorf 2,Niels Grarup 2,TorbenJørgensen8,9,10,Ivan Brandslund 11.12,HenrikBjørnNielsen13,Agnieszka S. Juncker 13 G. Zoetendal 14, Søren Brunak 13, Karine Cle´ment 15,16,17, Joeiter Dor´e 1.18, Michiel Kleerebezem 14, Karsten Kristiansen 19, Pierre Renault 18, Thomas Sicheritz-Pontan 15,16,21, Jeroen Raes 4.5, Torben Hansen 2.22, Metahit Consortium {, Peer Bork 6,Jun Wang 3,19,23,24,25,S。DuskoEhrlich 1&Oluf Pedersen 2,26,27,28
∗ Pawe l Doligalski(通讯作者):英国布里斯托尔大学经济学系,The Priory Road Complex,Priory Road,BS8 1TU,布里斯托尔,电子邮箱:pawel.doligalski@bristol.ac.uk,电话:+44 117 954 6930。Luis E. Rojas:西班牙巴塞罗那 Cerdanyola del Vall´es 08193 UAB 校区 B 栋,电子邮箱:luis.rojas@MOVEbarcelona.eu,电话:(+34) 93 581 47 39 分机 4739。Luis Rojas 感谢 ERC 高级资助 (APMPAL) GA 324048 的支持。Pawe l Doligalski 感谢匈牙利中央银行给予他在匈牙利任职期间参与该项目的机会。我们非常感谢联合编辑 Florian Scheuer、匿名审稿人以及 ´ Arp´ad ´ Abrah´am、Charles Brendon、Antoine Camous、Hal Cole、Mike Golosov、Piero Gottardi、Ramon Marimon、Wojciech Kopczuk、Claus Kreiner、Dirk Krueger、Etienne Lehmann、Humberto Moreira、Erwin Ooghe、Wojciech Paczos、Evi Pappa、Dominik Sachs、Julia Schmieder、Jon Temple 和 Yanos Zylberberg 提出的宝贵意见。所有错误均由我们自己承担。
首席研究员(https://www.bocklab.org/people)克里斯托夫·博克(Christoph Bock)是CEMM的首席研究员,也是维也纳医科大学的[BIO]医学信息教授。他的研究结合了生物学(单细胞测序,表观遗传学,CRISPR筛查,合成生物学)与计算(生物信息学,机器学习,人工智能) - 用于癌症,免疫学和精度医学。克里斯托夫·博克(Christoph Bock)还是CEMM生物医学主持设施的科学协调员,人类细胞地图集(HCA)成员组织了欧洲学习与智能系统(ELLIS)的欧洲实验室委员会委员会,并当选为奥地利科学院的年轻学院成员。他获得了重要的研究奖,包括ERC首发赠款(2016-2021),ERC合并赠款(2021-2026),Max Planck Soci-Ety的Otto Hahn奖章(2009年),国际计算生物学学会的Opterton奖(2017年)和Erwin Schrourian Actorecence(2017年)和国际计算生物学学院(2017年)。自2019年以来,他一直被列为世界上“高度引用的研究人员”(ISI)。他共同创立了维也纳的两家初创公司:Myllia Biotechnology和Neurolentech。
04EE6801计算技术3-0-0:3 2020课程先决条件•UG级别的工程数学基础知识。•对编程语言的知识,最好是MATLAB或八度或SCILAB课程目标•为学生提供计算工程系统中的应用程序课程提纲中所需的数学技术。普通微分方程和部分微分方程的数值,分析解。数值方法的稳定性。迭代解决方案。矩阵方程。疾病和规范。线性和无约束的优化。单纯式方法。本课程完成后的预期结果,学生将具有:•使用数值迭代技术(包括牛顿方法,插值方法)求解方程•使用数值迭代技术求解方程,包括三角形技术,特征>•将数值技术应用于动力系统的微分方程的解决方程•使用MATLAB/八度/SCILAB平台来解决方程•将数值技术应用于偏微分方程的解决方案•获取各种无约束优化的知识。教科书:1。Erwin Kreyszig,高级工程数学第9版,Wiley International Edition 2。William H. Press,Saul A. Teukolsky,William T. Vetterling,Brian P. Flannery,科学计算的数值食谱,剑桥大学出版社3。Igor Grivia,Stephen G Nash,Arielasofer,线性和非线性优化,第二版,暹罗