摘要:基于介质的微生物电化学系统(例如微生物燃料电池 (MFC))的设计、开发和应用进展的核心作用之一是通过细胞外电子转移 (EET) 模式在导电电极表面和微生物之间建立有效且成功的通信。大多数基于微生物的系统需要使用人工电活性介质来促进和/或增强电子转移。我们之前的工作建立了一个外源性吩嗪类介质库作为介质系统,以使模型微生物大肠杆菌作为一种有前途的生物技术宿主能够进行 EET。然而,向微生物电化学系统中添加外源性介质具有某些限制性缺点,特别是关于介质对细胞的毒性和增加的运营费用。在此,我们展示了通过将来自铜绿假单胞菌的吩嗪生物合成途径引入大肠杆菌,大肠杆菌能够内源性地自生成吩嗪代谢物的代谢和遗传工程。该生物合成途径包含一个由七个基因组成的吩嗪簇,即 phzABCDEFG(phzA-G),负责从分支酸合成吩嗪-1-羧酸 (PCA),以及两个另外的吩嗪辅助基因 phzM 和 phzS,用于催化 PCA 转化为绿脓素 (PYO)。我们展示了通过电化学测量、RNA 测序和显微镜成像收集的工程化大肠杆菌细胞的特征。最后,工程化大肠杆菌细胞用于设计性能增强的微生物燃料电池,最大功率密度从未工程化大肠杆菌细胞的 127 ± 5 mW m − 2 增加到基因工程的、产生吩嗪的大肠杆菌的 806 ± 7 mW m − 2。我们的结果表明,将异源电子穿梭引入大肠杆菌可以提高电池的性能。大肠杆菌不仅是一种有效的策略,而且是一种很有前途的策略,可以在活生物电化学系统中建立有效的电子介导,并提高与 MFC 电流产生和功率输出相关的整体 MFC 性能。关键词:微生物燃料电池、基因工程、性能改进、细胞外电子转移 ■ 介绍
摘要。背景/目标:饮食和重组蛋白酶(RMETASE)的蛋氨酸限制对癌症治疗有效或与化学疗法药物结合在一起。我们先前表明,可以在小鼠微生物组中安装口服rmeTase产生大肠杆菌JM109(大肠杆菌JM109-RMETASE)的大肠杆菌JM109(大肠杆菌JM109-RMETASE),并抑制同步小鼠模型中的结肠癌生长。在本报告中,我们研究了口服大肠杆菌JM109-胺在原位三阴性乳腺癌(TNBC)细胞系小鼠模型中的疗效。材料和方法:首先,我们在雌性无胸腺NU/NU裸小鼠4-6周的腹部乳腺上建立了原位4T1小鼠三阴性乳腺癌。肿瘤生长后,将15只小鼠分为三组5。第1组通过每天两次口服磷酸盐缓冲盐水(PBS)作为对照。第2组由非重组大肠杆菌JM109通过每天两次口服口服的细胞作为对照。第3组由两次饲养大肠杆菌JM109-RMETASE细胞
和α-连接的ʟ-鼠李糖部分。近年来,已开发出几种候选疫苗来通过将细胞壁多糖与合适的蛋白质结合来控制细菌感染,其中包括针对b型流感血友病(Hib) [12,13]、脑膜炎[14]、肺炎球菌感染[15,16]和肠道疾病如霍乱[17]、腹泻[18]和尿路感染[19]的疫苗。尽管可以通过发酵技术分离多糖,但是很难从天然来源中获得大量具有足够纯度的多糖片段。因此,开发化学合成策略对于获得具有足够纯度的所需数量寡糖片段非常重要。在这个方向上,本文介绍了使用顺序糖基化策略对对应于E. albertii O4菌株细胞壁O抗原多糖的五糖重复单元进行全合成(图1)。
摘要 大肠杆菌是印度尼西亚尿路感染 (UTI) 的主要原因,每年约有 180,000 例报告。UTI 病例越多,越需要使用准确、快速、简单且经济的 DNA 分离方法进行 PCR 诊断。然而,目前煮沸 DNA 分离法中没有从蛋白质和 RNA 污染物中纯化 DNA 的阶段。本研究旨在调查将蛋白酶 K 和 RNase 纳入煮沸 DNA 分离法对分离过程中大肠杆菌 DNA 纯度和浓度的影响。煮沸法涉及加热至 95 C – 100 C 导致细胞裂解并释放细胞成分,包括 DNA。尿液样本以不同的麦克法兰标准(0.25、0.5 和 1)人工污染大肠杆菌。然后进行煮沸 DNA 分离法,然后使用 NanoDrop 分光光度计分析纯度和浓度。本研究表明,煮沸 DNA 分离法中使用的蛋白酶 K 和 RNase 浓度与随后的 DNA 纯度和浓度增加之间存在正相关性。尽管与未添加蛋白酶 K 和 RNase 相比,DNA 纯度和浓度有所增加,但与未添加蛋白酶 K 和 RNase 相比,其统计学意义并不显著,DNA 纯度的 p 值为 0.245,DNA 浓度的 p 值为 0.353。建议进一步研究在煮沸 DNA 分离法中使用更高的蛋白酶 K 和 RNase 浓度,以提高大肠杆菌 DNA 的纯度和浓度。这种增强可以改善 PCR 扩增并有助于诊断大肠杆菌相关的尿路感染。关键词煮沸法、DNA 纯度、DNA 浓度、蛋白酶 K、RNase。
由于商业饮用水的成本上涨,居民(尤其是在农村地区)越来越依赖自流井水,而自流井水通常是未经处理的,并且没有经常测试是否有损坏。这可能导致摄入对抗生素耐药性的微生物的摄入风险更高。因此,这项研究的重点是从菲律宾Losbaños,菲律宾的Losbaños中检测出来自选定Barangays(Bayog,Malinta和Mayondon)的自流井水样品的粪便(特别是大肠杆菌)。分离的大肠杆菌以获得抗菌素耐药性。使用多管发酵法确定,在30个水样中,大肠菌群的八个水样呈阳性。在八个样品(MY2-2,ML2-3和ML2-4)中,有三个获得了大肠杆菌分离株,如通过表型和分子表征所识别的。使用磁盘扩散测定法,在分离株中鉴定出抗生素头孢唑酮,Meropenem,loxacinem和甲氧苄啶磺胺甲恶唑的耐药模式。的结果表明,MY2-2对头孢曲松,MeropeNem和甲氧苄啶磺胺甲氧唑具有抗性。 ML2-3对头孢唑酮和MeropeNem具有抗性,而ML2-4对所有四种抗生素具有抗性。聚合酶链与引物检测到TEM基因的反应,这是一种扩展的β-内酰胺酶基因,表明分离株对氨苄西林和青霉素具有抗性。表型和分子方法的结果表明分离株具有多药耐药性。根据家庭访谈,隔离了MY2-2的自流井水被10个家庭用来饮酒。因此,地方政府部门应定期监测自流井水的微生物质量,进行教育和信息运动,以了解可以从消耗不洁的水中染上的疾病,并确保可以使用饮用水,尤其是对于没有净化水的家庭。
Valley Delmech,Nadia Perthat,Oriane Monet,外国Marion,Darii Ecataria和Al。插入Methabolia,2022,72,pp.200-214。10.1016/j.ymben.2022.03.010。
摘要 盛宴-饥荒反应蛋白是原核生物中一类广泛保守的全局调节蛋白,其中研究最多的是大肠杆菌亮氨酸反应调节蛋白 (Lrp)。Lrp 能够感知环境营养状况,并随后直接或间接地调节大肠杆菌中多达三分之一的基因。Lrp 主要以八聚体和十六聚体 (16 聚体) 的形式存在,其中亮氨酸被认为会使平衡向八聚体状态移动。在本研究中,我们分析了三种寡聚状态的 Lrp 突变体在其与 DNA 结合和调节外源亮氨酸引起的基因表达的能力方面的影响。我们发现二聚体以上的寡聚化是 Lrp 的调节活性所必需的,并且与之前的推测相反,外源亮氨酸仅通过抑制 Lrp 与 DNA 结合来调节其靶启动子处的 Lrp 活性。我们还证明了 Lrp 结合可以在数千碱基的长度范围内连接 DNA,揭示了 Lrp 介导的转录调控的一系列新机制。
摘要:这项研究调查了延伸谱β-内酰胺酶(ESBL)的存在,分布和抗菌抗性谱,在意大利北部的乳制品群中生产大肠杆菌。收集了临床健康的犊牛,母亲和接受乳腺炎处理的奶牛的粪便,以及水,环境样品和废物牛奶的粪便,并在Chromagar TM ESBL板上接受了细菌培养。进行了问卷调查以识别风险因素。通过MALDI-TOF MS将分离株鉴定为大肠杆菌,并进行双盘协同测试(DDST)和最小抑制浓度(MIC)测定。结果,从37个(75.67%)小牛的28个粪便中分离出ESBL大肠杆菌,3(66.67%)处理过的奶牛的粪便,14个(57.15%)环境样本中的8个(57.15%)和废牛奶。所有ESBL分离株均显示出多种电阻,并被归类为抗多药(MDR)。确定了ESBL大肠杆菌选择和扩散的几种危险因素,包括缺乏对小牛喂养和住房设备的常规清洁,将废牛奶施用到雄性小牛和毛毯干牛治疗。总而言之,这项研究强调了大多数奶牛粪便中MDR,ESBL大肠杆菌的存在及其与不同样品来源的关联。因此,增加了抗生素的审慎使用,采用适当的农场卫生和生物安全措施也可能有助于防止Esbl E. Coli在牧群中的传播和传播。
1罗伯特·史密斯(Robert F. Smith F. Smith)化学与生物分子工程学院,康奈尔大学,纽约州,纽约州,美国,2化学与生物工程系,西北大学,西北大学,技术学院,伊利诺伊州伊利诺伊州埃文斯顿,美国伊利诺伊州埃文斯顿,3化学生命过程,西北大学,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,美国北科学学院。美国伊利诺伊州埃文斯顿,5生物化学,分子和细胞生物学,康奈尔大学,纽约州伊萨卡大学,美国6人口医学和诊断科学系,康奈尔大学兽医学院,康奈尔大学,纽约州伊塔卡大学,纽约州纽约州,美国,美国斯坦福大学,纽约州斯坦福大学,美国斯坦福大学7号。纽约州伊萨卡,美国
致病细菌的快速准确检测对于食品安全和公共健康至关重要。常规检测技术,例如基于核酸序列的扩增和聚合酶链反应,是耗时的,需要专门的设备和训练有素的人员。在这里,我们基于新型混合MOS 2纳米材料来提出快速,一次性阻抗传感器,用于检测大肠杆菌DNA。我们的结果表明,所提出的传感器在10-20和10-15 m的中心之间线性运行,在0.325 nm探针浓度传感器下观察到的最高灵敏度达到了令人印象深刻的检测极限。此外,电化学阻抗光谱生物传感器对大肠杆菌DNA的潜在选择性在枯草芽孢杆菌和纤维状化蛋白水解的DNA序列上表现出潜在的选择性。这些发现为有效,精确的DNA检测提供了承诺的途径,对更广泛的生物技术和医学诊断应用具有潜在的影响。