本文研究了一种联合估计基于能量的模型和基于流的模型的训练方法,其中两个模型基于共享的对抗值函数进行迭代更新。该联合训练方法具有以下特点:(1)基于能量的模型的更新基于噪声对比估计,流模型作为强噪声分布。(2)流模型的更新近似地最小化了流模型与数据分布之间的 Jensen-Shannon 散度。(3)与生成对抗网络(GAN)估计由生成器模型定义的隐式概率分布不同,我们的方法估计数据上的两个显式概率分布。使用所提出的方法,我们证明了流模型的综合质量的显著改进,并展示了通过学习到的基于能量的模型进行无监督特征学习的有效性。此外,所提出的训练方法可以轻松适应半监督学习。我们取得了与最先进的半监督学习方法相媲美的成果。
我们提出了一种类别级 6D 物体姿势和大小估计的新方法。为了解决类内形状变化,我们学习了规范形状空间 (CASS),它是特定物体类别的大量实例的统一表示。具体而言,CASS 被建模为具有规范化姿势的规范 3D 形状的深度生成模型的潜在空间。我们训练变分自动编码器 (VAE) 以从 RGBD 图像在规范空间中生成 3D 点云。VAE 以跨类别的方式进行训练,利用公开可用的大型 3D 形状存储库。由于 3D 点云是以规范化姿势(具有实际大小)生成的,因此 VAE 的编码器学习视图分解的 RGBD 嵌入。它将任意视图中的 RGBD 图像映射到与姿势无关的 3D 形状表示。然后,通过将物体姿势与使用单独的深度神经网络提取的输入 RGBD 的姿势相关特征进行对比来估计物体姿势。我们将 CASS 的学习和姿势和尺寸估计集成到端到端可训练网络中,实现了最先进的性能。
年龄在 6 个月至 4 岁 11 个月 29 天之间、免疫功能低下且从未接种过疫苗的儿童应按计划接种 Covid-19-RNAm 疫苗 Moderna 的三剂主要疫苗。第一剂与第二剂之间的间隔为四周,第二剂与第三剂之间的间隔为八周;
单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
注册办公室:13级,公共信托大厦,威尔斯顿街22-28号|邮政信箱3479,惠灵顿6140奥克兰办公室:4级4,70 Shortland ST,奥克兰电话0800 220 090或+64 4 472 1880 | econ@nzier.org.nz | www.nzier.org.nz©NZ经济研究所(INC)。封面图像©Dreamstime.com Nzier的合同研究参与度标准条款,请访问www.nzier.org.nz。尽管Nzier将在进行合同研究和制作报告中使用所有合理的努力,以确保信息与可行性一样准确,但该研究所,其贡献者,雇员和董事会不应承担任何责任(无论是在合同,侵权(包括过失),公平性),公平性还是任何其他损害或损害任何损失或损害任何损失或损害任何事业的损害或损害。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
13) Levi Nwokafor 先生,独立石油营销商 - 成员 公用事业收费委员会执行秘书 - 成员 14) Adams Oshiomhole 先生,尼日利亚劳工大会主席 - 成员 15) Anne Okigbo 女士,世界银行代理常驻代表 - 成员 16) Chamberlain Oyibo 先生,GMD - 成员 17) 工程师 MM Ibrahim - 成员 18) Onaolapo Soleye 博士 - 成员 -< 19) 律师 Sola Adepetun - 成员 20) Nuhu Obaje 博士,地质学家 - 成员 21) Yinka Omorogbe 先生,学者 - 成员 22) Donu Kogbara 女士,记者 - 成员 v23) BPE 总干事 - 委员会协调员 24) AA Udofia 先生,BPE - 秘书
I. 资助行动描述:地方国防社区合作办公室 (OLDCC) 向各州和社区提供赠款和技术援助,以促进与国防部的伙伴关系,包括军事设施和当地工业基地,以加强任务,实现设施和基础设施节约并降低运营成本,解决侵占和兼容土地使用问题,支持军人家庭,提高军事、民用和工业准备度和弹性。它还使州和地方政府能够计划和执行民事经济调整响应,以应对国防行动对劳动力、企业和社区的影响。这些努力经常利用其他联邦和州/地方技术和财政资源,进一步造福国防部和我们的民事合作伙伴。所有 OLDCC 活动都是在州和地方民事努力的同时进行的,要么是为了应对当地的影响或需要,要么是为了支持我们的国家安全任务,体现了国防部长的三大优先事项:保卫国家、照顾我们的人民和通过团队合作取得成功。这些活动还支持国防部临时国家安全战略指导的以下要素:
摘要 - 次数是最敏捷的飞行机器人之一。尽管在基于学习的控制和计算机视觉方面取得了进步,但自动无人机仍然依赖于明确的状态估计。另一方面,人类飞行员仅依靠从板载摄像头的第一人称视频流将平台推向极限,并在看不见的环境中坚固地飞行。据我们所知,我们提出了第一个基于视觉的四摩托系统,该系统自动浏览高速的一系列门,而直接映射像素以控制命令。像专业的无人机赛车飞行员一样,我们的系统不使用明确的状态估计,并利用人类使用的相同控制命令(集体推力和身体速率)。我们以高达40 km/h的速度展示敏捷飞行,加速度高达2 g。这是通过强化学习(RL)的基于识别的政策来实现的。使用不对称的参与者批评,可以促进培训,并获得特权信息。为了克服基于图像的RL训练期间的计算复杂性,我们将门的内边缘用作传感器抽象。可以在训练过程中模拟这种简单但坚固的与任务相关的表示,而无需渲染图像。在部署过程中,使用基于Swin-Transformer的门检测器。我们的方法可实现具有标准,现成的硬件的自动敏捷飞行。尽管我们的演示侧重于无人机赛车,但我们认为我们的方法超出了无人机赛车的影响,可以作为对结构化环境中现实世界应用的未来研究的基础。
