自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
如今,微电子技术需要寻找新材料,包括用于创建结构的掩模。中间硬掩模策略是实现微电子制造中光刻和蚀刻之间良好平衡的关键问题之一。微电子和光伏技术中一个有趣的挑战是在 Si 衬底上创建间距垂直取向的硅阵列,用于多功能半导体器件。制造这种结构仍然是一个严重的技术问题,需要寻找新的方法和材料。在这项工作中,我们建议使用钪作为硅上的新硬掩模材料,因为它具有高抗等离子化学蚀刻性和低溅射系数。我们已经证明,对厚度为几纳米的钪层进行湿法蚀刻可用于在硅上获得分辨率高达 4 微米的图案结构,这对于湿法蚀刻方法来说是一个很好的结果。在选定的等离子蚀刻条件下,与其他金属掩模相比,钪是一种具有极佳抗性的硅掩模,蚀刻速率最低。因此,钪硬掩模可以为形成不同的微尺度地形图案开辟新的可能性。
通过 Bosch 工艺在硅中蚀刻高深宽比结构对于微机电系统 (MEMS) 和硅通孔 (TSV) 制造等现代技术至关重要。由于蚀刻时间长,该工艺对掩模选择性的要求非常高,并且事实证明 Al 2 O 3 硬掩模在这方面非常合适,因为与传统的 SiO 2 或抗蚀剂掩模相比,它提供了高得多的选择性。在这项工作中,我们结合使用扫描电子显微镜 (SEM)、光谱椭圆偏振仪 (SE) 和 X 射线光电子能谱 (XPS) 深度剖析来仔细研究 Al 2 O 3 掩模蚀刻机理,从而探究超高选择性的来源。我们证明,通过增加钝化步骤时间,在 Al 2 O 3 上会形成更厚的氟碳聚合物层,然后以微小的平均蚀刻速率 ~0.01 nm/min 去除 Al 2 O 3。 XPS 深度剖析显示,在采用 Bosch 工艺进行深反应离子蚀刻 (DRIE) 的过程中,聚合物和 Al 2 O 3 之间会形成一层 AlF x 层。由于 AlF x 不挥发,因此需要溅射才能去除。如果聚合物层足够厚,可以衰减进入的离子,使其能量不足以导致 AlF x 解吸(例如当使用较长的钝化时间时),则掩模不会被侵蚀。通过研究不同次数 DRIE 循环后的表面,我们还获得了有关 AlF x 的形成速率以及 DRIE 工艺过程中 Al 2 O 3 和聚合物厚度变化的信息。这些发现进一步扩展了对 DRIE 的认识,并可帮助工艺工程师相应地调整工艺。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
摘要:基于依赖的微型倒数阵列,除其他外,用于红外光估算器和焦平面阵列的键合。在本文中,研究了具有光滑表面形态的微米大小凹凸的制造技术的几个方面。已优化了乳化剂的热蒸发,以实现〜8 µm厚的层,其表面粗糙度为r a = 11 nm,表明原子的堆积密度很高。这确保了整个样品的凸起均匀性,并防止在重新流之前的列内氧化。描述了一系列优化优化inimumbump制造技术的实验,包括单列的剪切测试。在10%HCl溶液中预蚀刻im缩柱之前,开发了一种可靠,可重复,简单和快速的方法。
R. Ariff a,b , CK Sheng a,* a 马来西亚登嘉楼大学科学与海洋环境学院,21030 Kuala Nerus,登嘉楼,马来西亚。b 马来西亚登嘉楼大学海洋工程技术与信息学学院,21030 Kuala Nerus,登嘉楼,马来西亚。使用酸性或氟化物溶液对硅表面进行湿法蚀刻具有技术和基础意义,这对于生产用于微电子封装所需厚度的可靠硅芯片至关重要。在这项工作中,我们研究了湿法蚀刻对浸入 48% HF/水溶液中的硅晶片的厚度耗散、重量损失、蚀刻速率、表面形貌和晶体性质的影响。蚀刻速率是通过蚀刻重量损失和深度随时间的变化确定的。结果表明,随着蚀刻时间的增加,硅的厚度减少和重量损失增加。在高分辨率光学显微镜下可以在蚀刻后的硅晶片表面观察到粗糙的表面。从 XRD 分析可以看出,蚀刻后硅的结晶峰强度变弱,这意味着硅衬底上形成的非晶结构表面的光散射减少。毕竟,这一发现可以作为生产可靠的硅薄晶片的参考,这对于更薄的微电子器件制造和纳米封装至关重要,从而减少环境污染和能源消耗,实现未来的可持续发展。(2021 年 3 月 27 日收到;2021 年 7 月 7 日接受)关键词:湿法蚀刻、Si、蚀刻速率、HF、H 2 O
抽象锂 - 硫(Li - S)电池被认为是锂离子电池的有希望的下一代替代品,由于其高能量密度,用于储能系统。然而,尚未解决的几个挑战,例如导致电池自放电的多氧化还原航天飞机。在本文中,我们探讨了聚合物蚀刻离子轨膜作为LI - S电池中的分离器的使用,以减轻氧化还原班车的效果。与商业分离器相比,它们的独特优势在于它们非常狭窄的孔径分布,并且有可能以独立的方式量身定制和优化纳米孔的密度,几何形状和直径。直径在22到198 nm之间的各种聚对邻苯二甲酸酯膜,并且成功地整合到Li - S Coin细胞中。据报道的库仑效率高达97%,容量较小,为使用量身定制的膜在Li - S电池中的多氧化氧化还原航天飞机开辟了一条途径。
摘要:NF 3 的使用量每年都在显著增加。然而,NF 3 是一种温室气体,具有极高的全球变暖潜能值。因此,开发一种替代 NF 3 的材料是必需的。F 3 NO 被认为是 NF 3 的潜在替代品。在本研究中,研究了替代温室气体 NF 3 的 F 3 NO 等离子体的特性和清洁性能。对 SiO 2 薄膜进行了蚀刻,分析了两种气体(即 NF 3 和 F 3 NO)等离子体的直流偏移,并进行了残留气体分析。基于分析结果,研究了 F 3 NO 等离子体的特性,并比较了 NF 3 和 F 3 NO 等离子体的 SiO 2 蚀刻速率。结果表明,两种气体的蚀刻速率平均相差 95%,从而证明了 F 3 NO 等离子体的清洁性能,并证实了用 F 3 NO 替代 NF 3 的潜在益处。
我们提出了一种用于原子力显微镜(AFM)的单晶钻石扫描探针的新型制造方法,利用了法拉第笼式角度蚀刻(FCAE)。常见的,基于氧气的,电感耦合的血浆(ICP)钻石的干蚀刻过程相对于可实现的几何形状受到限制。因此,独立微型和纳米结构的制造是具有挑战性的。这是几个应用领域的主要缺点,例如,用于实现基于氮空位(NV)中心的扫描磁力测定探针,并且能够测量纳米级的磁场。与既定的机械钻石设备的既定制造技术相比,将平面设计与FCAE和最先进的电子束光刻(EBL)相比,过程复杂性和成本降低。在这里,我们报告了两种方法的直接比较,并在扫描探针应用程序中目前的第一个概念验证平面-FCAE-PROTOTYPES。