摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。
下一代半导体设备需要超低介电常数(ULK)材料,例如线结构后端的多孔SICOH,以使较低的电阻和电容(RC)时间延迟,但是,这些ULK材料在蚀刻过程中容易受到损坏。在这项研究中,纳米级牙线掩盖多孔的sicoH的蚀刻特征,例如蚀刻速率,蚀刻效果,表面损伤等。和等离子体特性,已使用双电频电容性耦合等离子体系统(DF-CCP)进行了研究,并通过使用用于低k介电蚀刻的常规C 4 F 8基于CC 4 F-CCP的气体进行了比较。结果表明,对于多孔SICOH的相似蚀刻速率和蚀刻率,与C 3 H 2 F 6的蚀刻相比,观察到较低的侧壁损伤。The analysis showed that it was related to less UV (less than 400 nm) emission and less fluorine radicals in the plasma for C 3 H 2 F 6 compared to C 4 F 8 , which leads to less fluorine diffusion to the sidewall surface of the etched porous SiCOH by the fluorine scavenging by hydrogen in C 3 H 2 F 6 .
1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。
等离子体系统在硅和二氧化硅蚀刻期间发生过多的聚合物形成的额外问题。当血浆中的游离碳原子相互联系而不是与其他原子形成挥发性物种时,这种聚合物形成。具有高碳与氟比率的蚀刻气体经常遇到这种情况,这是因为它们释放到等离子体的自由碳原子数量越大。反应器表面上的聚合物形成会影响蚀刻的可重复性,也可以作为颗粒污染的来源。可以通过氧血浆在以后的时间彻底去除该聚合物,但仍然需要减少其初始形成。实现这一目标的一种方法是改变蚀刻化学。在血浆中添加含有化合物的氧或氧将抑制聚合物形成,但本身将对等离子体的蚀刻特性产生影响[4]。
图 3.8. 计算漫反射角的说明。a) 粒子的漫反射将具有相对于表面法线的朗伯分布。b) 通过将表面法线假设为从笛卡尔 z 轴旋转的 Z 轴和在 XY 和 xy 车道交叉线上重叠的旋转 X 轴,只需要两个欧拉角。c) 利用欧拉角,将漫反射计算回主坐标系。d) 最终的粒子反射是镜面反射和漫反射的总和。................................................ 70
硅制造技术已成功应用于开发芯片实验室应用设备。最近,我们提出了针对单核苷酸多态性 (SNP) 检测的芯片实验室 (LoC) 系统 [1-2]。单核苷酸多态性 (SNP) 是指 DNA 序列中只有一个核苷酸的差异。每个人大约有 5 x 10 6 个 SNP [3- 4]。SNP 会导致人与人之间的差异,例如长度、头发和眼睛的颜色,但更重要的是,SNP 会导致对药物的反应和患病倾向的差异;因此,经济高效的 SNP 检测可以在个性化医疗保健中发挥重要作用。在我们提出的 LoC 系统中,主要组件是微柱过滤器、混合器、聚合酶链反应 (PCR) 腔和储液器。这些结构由 DSiE 制造。这些结构的目标深度为 250-300µm。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。
在 DRAM 器件中制造电荷存储电容器时,高纵横比 (AR) 沟槽对于实现大电容值必不可少。高 AR 沟槽的蚀刻会受到固有 RIE 滞后机制的影响,这是由于深沟槽底部的离子能量和蚀刻物质数量减少所致。本文提出了两种方法来尽量减少这些问题,从而实现更高的硅蚀刻速率和更深的沟槽。本文所述工作中使用的气体混合物为 HBr + NF 3 + O 2 。沟槽蚀刻工艺的设计目的是在蚀刻沟槽时在侧壁上连续沉积一层薄钝化膜。这种氧化物状钝化膜 (SiO x F y Cl z ) 可防止沟槽侧壁在 XY 平面表面被蚀刻时被蚀刻。在蚀刻过程中平衡形成钝化膜对于在高纵横比沟槽蚀刻中实现高度各向异性至关重要。尽管钝化膜形成于包括蚀刻前沿在内的所有表面上,但沟槽底部的膜却不断被入射到该表面上的高能离子去除。然而,侧壁上的膜不受离子轰击(除了那些以掠射角接收离子且能量 > 阈值能量的区域),因此不会被蚀刻,从而防止硅的横向蚀刻。该过程还提高了掩模选择性,因为钝化膜也沉积在掩模表面上,从而降低了其有效蚀刻速率。据悉,蚀刻工艺内置有沉积组件,可在沟槽表面形成氧化物状钝化膜。由于沟槽开口附近的壁暴露在高浓度反应物等离子体中的时间最长,因此此处的沉积物较厚(> 25 nm),并随着深度逐渐变薄至 < 5 nm。沟槽下部沉积物较薄的另一个原因是,从倾斜掩模偏转的一些离子以掠射角到达该区域并使薄膜变薄。顶部沉积物较厚的直接后果是开口收缩,从而减小了这一临界尺寸,这反过来又通过减少进入沟槽孔的离子和中性粒子的数量而增加了 RIE 滞后。因此,可实现的深度减小,电池电容也减小了。显然,通过减薄衬里定期扩大该开口将允许更多蚀刻物质进入沟槽,底部的立体角增加,从而实现更高的硅蚀刻速率。虽然减薄可以在单独的系统中完成,但我们建议在本文中现场执行此步骤。需要定制此原位等离子清洗工艺,以便在此步骤中不会显著蚀刻掩模。这很关键,因为减薄工艺按要求,等离子体中几乎没有或完全没有沉积成分。我们已成功使用硅烷(例如 SiH 4 )和含 F 气体(例如 NF 3 )的混合物以及少量或完全没有氧气来进行此减薄步骤。另一种方法涉及去除钝化层