本征态热化假设 (ETH) 解释了为什么当哈密顿量缺乏对称性时,非可积量子多体系统会在内部热化。如果哈密顿量守恒一个量(“电荷”),则 ETH 意味着在电荷区内(微正则子空间内)的热化。但量子系统中的电荷可能不能相互交换,因此不共享本征基;微正则子空间可能不存在。此外,哈密顿量会有退化,所以 ETH 不一定意味着热化。我们通过假设非阿贝尔 ETH 并调用量子热力学中引入的近似微正则子空间,将 ETH 调整为非交换电荷。以 SU(2) 对称性为例,我们将非阿贝尔 ETH 应用于计算局部算子的时间平均和热期望值。我们证明,在许多情况下,时间平均会热化。然而,我们发现,在物理上合理的假设下,时间平均值收敛到热平均值的过程异常缓慢,这是全局系统大小的函数。这项工作将 ETH(多体物理学的基石)扩展到非交换电荷,这是量子热力学最近非常活跃的一个主题。
1。Eth Zurich通过提供有针对性的课程来支持讲师和学生,以获取与生成AI合作的高级技能。2。Eth Zurich促进了AI技术在教学以及学术和行政工作中的发展和嵌入。3。Eth Zurich正在为学生和教职员工装备AI支持的劳动力市场和明天的社会。4。Genai使用的法律方面涵盖了绩效评估的现有规则和“原创宣言”。违规行为,例如使用未经授权的艾滋病或不使用其使用的违规行为将继续采取纪律处分。
(苏黎世,2024年2月21日),由Paco Laveille博士和苏联化学系的Christophe Coperet教授领导的开创性项目在苏黎世Eth Eth eTh eTh Zurich的Applied Biosciences领导,这已经在可持续燃料和化学生产方面取得了进步,这要归功于开发催化剂的新技术。利用该项目中的机器人技术和AI,Copéret的团队使用较便宜的金属(例如铁,铜,钴)开发了有效的催化剂,并结合了其他元素。这项研究使催化剂的设计和生产能够在AI的帮助下提供可再现的数据。脱离的催化剂突破不仅会填补可持续能源部门反应中的现有空白,而且还会为该领域的更先进的研究带来前进。/web/2024/08-240221-59克服抗性白血病的免疫疗法
网站:https://www.empa.ch/web/s403/particlesbarrier https://scholar.google.ch/citations?user=cH5X5vAAAAAJ&hl=en OrcID:0000-0003-3723-6562 专业经历 2015 年 1 月至今 粒子@Barriers 小组组长和粒子-生物相互作用实验室副主任,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑 2012 年 5 月 - 2014 年 12 月 研究助理,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:P. Wick 博士 2008-2012 博士后研究员,材料-生物相互作用实验室,瑞士联邦材料科学与技术实验室 (Empa),瑞士圣加仑,导师:HF Krug 博士 教育经历 2002-2006 博士,瑞士苏黎世瑞士联邦理工学院 (ETH) 细胞生物学研究所 博士论文:“脊椎动物神经系统髓鞘形成研究:cdc42、rac1 和 profilin 1 信号在少突胶质细胞和施万细胞生物学中的作用” 导师:U. Suter 教授、ME Schwab 教授、J. Relvas 博士 1998-2002 自然科学硕士ETHZ,瑞士苏黎世联邦理工学院 (ETH) 毕业论文:“肌浆网蛋白与肌酸激酶相互作用的表征” 导师:T. Wallimann 教授、T. Hornemann 博士 1994-1998 年 赫尔布鲁格康顿学院,瑞士赫尔布鲁格 毕业(Matura Type E:经济学) 研究资助 2020-2023 年 欧盟旗舰石墨烯 (Core3 阶段) 共同申请人(1.5 亿欧元/55 万欧元) 2018-2021 年 SNSF- 胎盘介导的纳米材料风险 PI(260 kCHF) 2018-2020 年 欧盟旗舰石墨烯 (Core2 阶段) 共同申请人(8800 万欧元/350 (230 kCHF) 2014-2017 BMBF- NanoUmwelt 共同申请人 (1.8 M€ / 180 k€) 2013-2017 第 7 届 FP EU Nanosolutions ( NMP .2012.1.3-1 ) 共同申请人 (10 M€ / 290 k€) 学生监督 (* 共同监督) Claudia Rust* (ETH, 硕士论文, 2003), Carina Muoth (ETH, 硕士论文, 2012), Erminio Di Renzo (ETH, 硕士论文, 2018), Angela Diaz (Uni Castilla-La-Mancha, 硕士论文, 2021), Lukas Schlagenhauf* (ETH, 博士论文, 2011-2015), Carina Mouth (UZH, 博士论文, 2013-2016), Leonie Aengenheister(ETH,博士生,2015-2018 年)、Claudia Hempt(ETH,博士论文,2017-2020 年)、Daria Korejwo(UNIFR,博士生,2017-2020 年)、Woranan Netkeakul*(ETH,博士生,2017 年至今)、Lea Furer(ETH,博士生,2018 年 10 月开始)、Battuja Batbajar Dugershaw(ETH,博士生,2018 年 10 月开始)、Julia Boos*(ETH,博士生,2019 年至今) 教学/课程 讲座 福拉尔贝格应用技术大学:微纳米技术硕士课程(被公认为奥地利最好的技术学位课程)2010-2011 年
EthZürich教授EM。Richard Pink博士(瑞士EthZürich)居住在一个非架构的世界中,其他数学隐喻17:15•Eth Zentrum,Rämistrasse,Rämistrasse101,Zürich,Zürich,建筑物HG,HG,F 30
A. Terzopoulou,X。Wang,X.-Z.博士 Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语A. Terzopoulou,X。Wang,X.-Z.博士Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语
摘要:本文概述了Eth Zurich的Leonhard Med Trusted研究环境(TRE)的开发和运作。Leonhard Med为科学研究人员提供了安全研究敏感研究数据的能力。我们概述了用户观点,即处理敏感数据,设计历史记录,当前状态和操作的法律框架。Leonhard Med是一个有效的,高度安全的可信赖的研究环境,用于数据处理,由ETH ETH托管,由ETH的科学IT服务(SIS)运营。它提供了一大堆安全控制,使研究人员可以根据瑞士立法和苏黎世数据保护政策存储,访问,管理和处理敏感数据。此外,Leonhard Med满足了生物培训信息安全政策,并且与国际数据保护法兼容,因此可以在国家和国际协作研究项目的范围内使用。最初设计为“裸机”高性能计算(HPC)平台,以实现最高性能,后来重新设计为虚拟化的私人云平台,以向其客户提供更多的效果。敏感数据可以在称为租户的安全,分离的空间中分析。技术和组织措施(TOMS)已适当地确保敏感数据的确定性,完整性和可用性。同时,Leonhard Med确保了对尖端研究软件的广泛访问,尤其是用于分析人类数据和其他个性化健康应用程序。
摘要:本征态热化假设 (ETH) 是统计力学在一般孤立量子系统中出现的主要猜想,它以算子的矩阵元素的形式表示。一种称为遍历双分 (EB) 的类似物描述了纠缠和局部性,并以本征态的分量的形式表示。在本文中,我们显著地推广了 EB 并将其与 ETH 统一,扩展了 EB 以研究更高的相关性和非平衡系统。我们的主要结果是一种图解形式,它基于最近发现的 ETH 与自由概率论之间的联系来计算本征态和算子之间的任意相关性。我们将图表的连通分量称为广义自由累积量。我们以多种方式应用我们的形式。首先,我们关注混沌本征态,并建立所谓的子系统 ETH 和 Page 曲线作为我们构造的结果。我们还改进了已知的热约化密度矩阵计算,并评论了先前在蒸发黑洞的 Page 曲线计算中注意到的纠缠熵复制方法的固有自由概率方面。接下来,我们转向混沌量子动力学,并证明 ETH 是热化的充分机制。具体而言,我们表明约化密度矩阵会放松到其平衡形式,并且系统在后期遵循 Page 曲线。我们还证明纠缠增长的不同阶段被编码在 EB 的更高相关性中。最后,我们一起研究了本征态和算子的混沌结构,并揭示了它们之间先前被忽视的相关性。至关重要的是,这些相关性编码了蝴蝶速度,这是相互作用量子系统的一个众所周知的动力学特性。