电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统来解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器具有扩展的温度范围、抗振动性和 EMI 兼容性,方向流量控制阀的数字板载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可在恶劣环境中使用,安装在执行器本身上。这种布置改善了闭环控制中的整体系统响应时间和性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
1 目录 1 2 文档历史记录 2 3 欢迎说明 3 4 预期用途 3 5 安全信息 3 5.1 一般安全说明 3 5.2 BX18 电弧发生器和母 EDM 机器的安全说明 4 5.3 EMC 5 6 电气接口 5 6.1 前面板接口 5 6.2 后面板接口 6 6.2.1 电源入口 - X1 6 6.2.2 EDM 输出 7 6.2.3 ESTOP 和警告灯连接器 - X2 8 6.2.4 电弧感应输入 - X3 9 7 EtherCat 接口 10 7.1 输入 PDO 10 7.1.1 输入 PDO - 状态 10 7.1.2 输入 PDO - EDMservofeedback 10 7.1.3 输入 PDO - 电源 11 7.2 输出 PDO 11 7.2.1 输出 PDO - 控制 12 7.2.2 输出 PDO - 开启时间 12 7.2.3 输出 PDO - 关闭时间 12 7.2.4 输出 PDO - 电流 12 8 处理电源错误 13 9 适用指令和合规性 13 10 维护 14 11 技术规格 14 12 参考资料 15 附录 A - 有效参数设置 16 附录 B - 有效状态/模式转换 16
Industrial subsystem: • 2× Gigabit Industrial Communication Subsystems (PRU_ICSSG) – Optional support for Profinet IRT, Profinet RT, EtherNet/IP, EtherCAT, Time-Sensitive Networking (TSN), and other Networking Protocols – Backwards compatibility with 10/100Mb PRU- ICSS – Each PRU_ICSSG contains: • 3× PRU RISC Cores per Slice (2× Slice per PRU_ICSSG) – PRU General Use core (PRU) – PRU Real-Time Unit core (PRU-RTU) – PRU Transmit core (PRU-TX) • Each PRU core supports the following features: – Instruction RAM with ECC – Broadside RAM – Multiplier with optional accumulator (MAC) – CRC16/32 hardware accelerator – Byte swap for Big/Little Endian conversion – SUM32 hardware accelerator for UDP checksum – Task Manager for preemption support • Up to 2× Ethernet ports – RGMII (10/100/1000) – MII (10/100) • Three Data RAMs with ECC • 8 banks of 30 × 32-bit register scratchpad memory • Interrupt controller and task manager • 2× 64-bit Industrial Ethernet Peripherals (IEPs) for time stamping and其他时间同步函数•18×Sigma-Delta滤波器模块(SDFM)接口 - 短路逻辑 - 过度电流逻辑•6×多协议位置编码器界面•1×增强捕获模块(ECAP)•16550-Compatible UART - 专用UART - 专用的192mhz时钟,支持122mbps Prifib pricibus
模块1:工业自动化系统(60小时)该模块旨在为学习者提供知识和应用技能,以将工业沟通标准整合到自动控制系统中;配有可编程逻辑控制器(PLC)和电动现场设备。在模块的末尾,学习者将能够回忆和应用基本PLC编程以控制自动化系统,并配置人机接口(HMI)。此外,学习者将使用IO-Link传感器来集成各种现场设备,以进行数据收集,以进行运动控制以及开放平台通信统一体系结构(OPC-UA)用于机器对机器(M2M)通信。模块2:带有云分析(60小时)工业控制器(PLC)的PLC通常用于控制工业和过程自动化,它们通常在本地场所内进行网络。使用云计算技术,今天的PLC将能够将其数据发送给远程服务器以进行监视和数据分析。该模块将为学生提供最新的技能,以开发基于PLC的自动化流程和项目,这些过程可以将数据发送到云中以进行监视,可视化和分析。此外,学生将学习如何在工业网络上集成控制设备,以扩展LAN和WAN的可访问性。在模块结束时,学生将能够应用他们从模块中学到的知识,并开发将数据发送到云中以进行分析和可视化的PLC应用程序。
应将通讯发送给StanisławLem:s tanislawl@pec.unipd.it文章IFIC杂志机器人Spectrum(https://anapub.co.ke.ke/journals/jrs/jrs/jrs.html) 2023;从2024年3月2日修订; 2024年4月2日接受。2024年5月23日在线可用。©2024作者。由Anapub出版物出版。这是CC BY-NC-ND许可证下的开放访问文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)摘要 - 这项研究中正在解决的机器人设备有两个武器:一个用于选择水果,另一个用于切碎它。手臂在使用相机的复杂视觉系统的帮助下找到并定位豆荚。在这个人类机器人的工作流程中,操作员选择了他们想要采摘的西红柿,然后机器人进行了实际采摘。机器人管理和通信系统使用Ethercat Bus与图形用户界面(GUI)创建链接,从而实现人类管理和控制。该项目的目的是创建和评估配备双臂的机器人系统,用于收获西红柿。该系统结合了一个配备两个机器人臂的移动模型和一个末端效应器,可提高番茄收集的效率。该系统使用GUI来增强机器人与人类操作员之间的相互作用。此外,它采用视觉模型来简化水果检测过程。这项研究的发现表明,HMI可能会显着提高番茄收集机器人的准确性。最后,开发3D模型存在一些困难,因为这项研究包括户外实验。