Deepfake技术的兴起通过引入一种新的方式来创建高度现实和令人信服的数字内容,通常是视频或图像,在这种方法中,通常不同意将一个人的相似之处替换为他人的相似之处。这项技术未经他们的同意,带来了实质性的风险,例如误导了对人的误导性,侵犯了个人权利,并遭受了潜在地位和潜在地位。目前,围绕Deepfakes的法律框架仍在发展中,创作者目前享有一定程度的免疫侵权责任。在这一不断发展的景观中,一个具有前瞻性的营销团队在其促销活动中尝试了深刻的效果,其中包括一个著名名人认可其产品的深层发展。尽管法律界限可以允许这种变革性的作品,但道德维度需要中心。
研究人员是否知道道德考虑因素以及何时将其应用于研究?本文使用二级数据源来描述数据编辑学科和原则的各个方面,并以道德考虑在定性和定量研究方法中研究研究中的编辑数据。通过过去的研究,研究的道德亚结构包含三个层面的维度:哲学,实践和反思性。数据编辑过程探索和审查数据,以确保一致性,错误和异常值和纠正错误,以提高收集到的数据的质量,准确性和充分性,从而使其更适合于收集数据的目的,例如检测到数据持续数字的字段数量和误差。数据编辑过程基于逻辑,常识和遵守书面程序或编辑指南,针对院士,政策制定者和研究人员的未来研究人员。
2025年1月15日撰写:纳粹·安迪比(Nazanin Andalibi)(密歇根大学),大卫·丹克斯(加利福尼亚大学,圣地亚哥分校),海莉·格里芬(Haley Griffin),海莉·格里芬(计算机研究协会),玛丽·卢·马赫(Mary Lou Maher)(计算机研究协会),杰西卡·麦克莱恩(JESSICA MCCLEARN(GOOGLE),Google)健康),凯蒂·西克(Katie Siek)(印第安纳大学),塔米·托斯科斯(Tammy Toscos)(Parkview Health),Helen V. Wright(计算研究协会)和Pamela Wisniewski(Vanderbilt University)此反应来自计算机研究协会(CRA)的计算社区联合会(CCC)(CCC)和CRA-Industry(CRA-Industry)。CRA是近250个北美计算机研究组织的协会,包括学术和工业,以及来自六个专业计算社会的合作伙伴。CCC的任务是CRA的小组委员会,是为了追求创新的,高影响力的计算研究,与紧迫的国家和全球挑战保持一致。CRA的另一个小组委员会CRA-I的使命是召集行业合作伙伴计算共同利益的研究主题,并将其与CRA的学术和政府选民联系起来,以促进共同利益和改善社会成果。请注意,本材料中表达的任何意见,发现,结论或建议是作者的意见,不一定反映了作者隶属关系的观点。下面我们回答了提出评论请求的问题1-9、11和13-14。
密码学长期以来一直是确保通信和保护隐私的工具。但是,其作用超出了技术实施,以涵盖重要的政治和道德方面。由埃里克·休斯(Eric Hughes)于1993年撰写的Cypherpunk宣言[7],强调了加密和拥护者的继承性政治本质,以此作为确保隐私和个人自由的一种手段。同样,菲利普·罗加威(Phillip Rogaway)的[10]工作强调了密码学家的道德责任,尤其是在大规模监视和社会影响的背景下。从根本上讲,密码学可以看作是“武装”群众保护自己的群众的一种手段。1993年的宣言和罗加威的作品强调了两个要点:不信任政府和保护集体数据。这种观点在戴维·乔姆(David Chaum)的思想中得到了回应,他提出了一个依靠强大加密来保护隐私的交易模型。尽管这些想法首次阐明了40多年,但保护社会免受信息滥用的梦想仍然很遥远。Chaum警告:
直接对人类胚胎进行基因改造是否会影响未来人的福祉?斯帕罗回答这个问题的方法违背了生物伦理学的一个核心目标:产生能够在研究、临床环境或公共政策中产生实际影响的观点。斯帕罗没有参与提供以经验为基础的人类身份描述的研究,而是不加批判地采用了帕菲特众所周知的两种基因干预类型的区分:“影响个人”和“影响身份”。这种区别对斯帕罗 (2022) 来说至关重要。鉴于对未来人的预期福利的合理关注,它允许他决定干预者是否对结果负有道德责任。影响个人的干预就是这种情况,因为只有在这种情况下,未来的人才会从干预中受益或遭受伤害。相比之下,目前通过 CRISPR 实现的体细胞或生殖细胞编辑通常涉及某种形式的选择——通过体外受精、体外胚胎核移植或植入前遗传学诊断——在植入妊娠母亲子宫之前选择“最佳孩子”。选择会影响身份,因为它会改变受孕时间,从而
此外,并非所有对AI透明度的担忧都是如此之高。有些担忧也更加脚踏实地。认为AI威胁要加剧当前歧视的人。担心,不透明的AI产生了促进种族主义,性别歧视和其他形式歧视的新方法,以及隐藏这种歧视的新方法。人类将继续以可预测的方式成为种族主义。这将部分归因于不透明的过程,这些过程指导了人类如何做出决定。,但是AI将创造新的种族主义方式。,它将创造新的方式来掩盖种族主义。这将是由于指导AI做出决定的不透明过程。AI可能与人类一样透明,理由是作出决定的原因。,但它的不透明性隐藏了支持和维持人类不透明度不存在的偏见的新方法。解决不透明人工智能中种族偏见的担忧,ZKMG(2019年,第673页)说:
脑机接口研究中采集的神经数据或实验样本反映了受试者的心理状态、生理健康、人格特质、财富信息等,属于隐私数据。采集数据的范围和人员的访问权限应经伦理委员会批准。应制定适当的处理和管理方案,并根据信息安全管理相关法律法规和技术标准,在数据或样本的采集、存储、使用、处理、传输、发布等全过程中对其进行保护。遵守《中华人民共和国个人信息保护法》《中华人民共和国数据安全法》等法律法规,加强风险监测,防止数据或样本泄露,保障数据安全和受试者的隐私及个人信息安全。
课程大纲 讲师:Kyle Ferguson,环境研究系兼职教授 电子邮箱:kyle.ferguson@nyu.edu 办公室:285 Mercer Street,902 室 虚拟办公室:Zoom(会议 ID:398 318 6573;密码:420026) 办公时间:周一和周三,下午 12:30–1:30 及预约时间 课程网站:纽约大学课程 > 伦理与环境,第 001 节 [ URL ] 课程描述:环境哲学是一门大学科,涉及形而上学、科学哲学和哲学史的问题,也涉及伦理学、美学和政治哲学等规范领域。本课程主要讨论这些规范领域。从价值理论的一些基本概念开始,我们的目标不是找到具体环境问题的明确解决方案,而是 (i) 提高您的批判性思考能力、仔细阅读的能力以及就环境问题进行良好辩论的能力;(ii) 向您介绍环境哲学中的一些主要争议;(iii) 帮助您对正在讨论的问题形成自己理性而清晰的观点。课程材料:
该课程的目的和大学的目的更广泛 - 是帮助您发展批判性思维技能,自行思考的能力。当我们进入人工智能时代(如果是我们正在做的话)时,为自己思考并清楚地表达您的想法的能力将比以往任何时候都变得更加重要。在您的学术写作中,您正在与其他人类就主要想法进行对话。我敦促您以自己的想法和自己的声音进行这种对话。写作过程虽然困难且耗时,但可以帮助您完善和澄清想法。本课程为您提供了练习和发展这些基本的批判性思维技能的机会。,如果您依靠聊天机器人来生成想法并为您写论文,则不会从中受益。