7 HSE 发出了禁令通知,禁止联合 Octel 公司有限公司重启氯乙烷生产,直到该公司证明“已确定重大事故隐患,并已采取适当预防措施,限制对人员和环境的影响”。EC 工厂于 1995 年 1 月重建并重新投入使用。所涉及的泵和管道进行了重要的详细设计变更,包括在容器连接低于液位的管道上安装遥控截止阀,以及在工厂和围堵 EC 工厂发生重大泄漏时增加仪表和警报。涉及火灾的三个主要工艺容器已被更换,并使用规格改进的最新绝缘包层进行保护。已引入改进的安全管理安排,以管理维护,并在公司内部实现更好的健康和安全承诺和沟通。
丙烯腈丁二烯苯乙烯。丙烯腈/丁二烯/丙烯酸酯。丙烯腈/氯化聚乙烯/苯乙烯。丙烯腈/乙二烯 - 丙烯 - 二烯/苯乙烯。丙烯腈/甲基丙烯酸甲酯。丙烯腈/苯乙烯/丙烯酸酯。醋酸纤维素。乙酸纤维素丁酸酯。丙酸纤维素丙酸酯。脆性甲醛。羧甲基纤维素。硝酸纤维素。丙酸纤维素。三乙酸纤维素。乙基纤维素。乙烯丙烯酸乙烯酸乙烯酸酯。 乙烯/甲基丙烯酸。 环氧或环氧树脂。 乙烯/丙烯。 乙烯/丙烯/二烯。 乙烯/四氟乙烯。 乙烯乙酸乙酯。 乙烯/乙烯基醇。 perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。 呋喃甲醛。 甲基丙烯酸酯/丁二烯/苯乙烯。 甲基纤维素。 三聚氰胺 - 甲醛。 三聚氰胺 - 苯酚 - 甲醛。 聚酰胺。 聚酰胺酰亚胺聚丙烯硝基烯。 聚酯氨基烷烷。 聚丁烯-L。聚丁烯三乙酸酯。 聚碳酸酯。 多氯二甲基。 邻苯二甲酸酯。 聚乙烯。 聚醚块酰胺。 聚醚酮。 聚醚酰亚胺。 聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。乙烯丙烯酸乙烯酸乙烯酸酯。乙烯/甲基丙烯酸。环氧或环氧树脂。乙烯/丙烯。乙烯/丙烯/二烯。乙烯/四氟乙烯。乙烯乙酸乙酯。乙烯/乙烯基醇。perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。呋喃甲醛。甲基丙烯酸酯/丁二烯/苯乙烯。甲基纤维素。三聚氰胺 - 甲醛。三聚氰胺 - 苯酚 - 甲醛。聚酰胺。聚酰胺酰亚胺聚丙烯硝基烯。聚酯氨基烷烷。聚丁烯-L。聚丁烯三乙酸酯。聚碳酸酯。多氯二甲基。邻苯二甲酸酯。聚乙烯。聚醚块酰胺。聚醚酮。聚醚酰亚胺。聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。聚乙烯氧化物。聚醚硫。聚对苯二甲酸酯。聚醚硫。聚醚聚氨酯。苯酚甲醛。全氟烷氧基烷烃。聚酰亚胺。 甲基丙烯酸甲酯。聚酰亚胺。甲基丙烯酸甲酯。
摘要:作者使用基于碳基于乙基纤维素的可生物降解基质的碳基复合材料探索了基于纸的电子产品的开发,该复合材料基于乙基纤维素和二元酯溶剂。主要重点是用于创建灵活,环保电子设备的屏幕打印技术。这项研究通过考虑各种组合物,包括石墨烯,石墨和碳黑色的各种组成,评估了这些复合材料的流变学测量,电特性,柔韧性和粘附的可打印性。研究发现,某些组合物提供了低于1kΩ /sq的薄板电阻,并且对纸质基板的良好粘附仅具有一层丝网印刷,这表明了商业应用的潜力,例如单使用电子,柔性加热器等。< /div> < /div> < /div>该研究还显示了循环弯曲对准备层的电气参数的影响。这项研究强调了矩阵的生物降解性的重要性,这是有助于可持续电子领域的。总体而言,这项研究提供了开发环保,灵活的电子组件的见解,突出了可生物降解材料在这个不断发展的行业中的作用。
尽管农业微生物学是土壤科学的一个相对较新的分支,但它已成为一种潜在的非常有用和独特的科学学科,尤其是在农场阵线当前能源限制的背景下。Microorganisms have relevance to agriculture in several ways—in biological nitrogen fixation, in human food and animal feed as single cell protein, as agents of insect pest control, as a source of fuel and energy, as a means to treat sewage, in converting cellulose or sugarcane juice into power alcohol, in producing new antibiotics which can control plant diseases, in gen- erating methane or biogas, in mobilizing磷通过内部和欧洲膜的植物等植物等。实际上,生物转化的整个概念基于微生物分解木质纤维素的能力。从苏云金芽孢杆菌的成功使用细菌杀虫剂开始,能够杀死许多鳞翅目的虫害作物的虫害,在欧洲和美国成功地制造了一系列真菌,细菌,原生动物和病毒性疾病。即使线虫控制也通过线虫诱捕真菌设想。使用微生物在抗击植物害虫中的使用是无污染的,实际上,目前,通过使用拮抗微生物,某些土壤传播疾病是通过生物学来控制的。同样,在日本常规诉诸于日本的商业准备的抗生素以控制植物的空中疾病。基因工程可以使用改善菌株对微生物过程的不断改进。在能源方面,巴西通过将其用甘蔗汁与乙醇生成的电力酒精替代,将汽车中汽油中的汽油的使用减少了10%。通过酶促的生物量利用 - 自然的巨大可再生木质纤维素的巨大储藏量被认为是非可再生化石燃料的可行替代品。微生物的快速生成时间以及可以处理其核材料的便利性,使它们非常适合“量身定制”它们,以产生所需的产品以服务人类。实际上,这是这种微生物“细胞能力”,目前由发达的伙伴中生物技术学家目前正在利用以生产胰岛素和干扰素。在未来的几年中,这个“单元力”
X1 包括与湿气或空气反应的无机化学品,这些化学品会与湿气剧烈反应,产生腐蚀性气体。 (例如四氯化钛、亚硫酰氯、氯化铝、三氯氧化磷、五氧化二磷、氯磺酸) X2 包括与湿气或空气反应的化学品,这些化学品会点燃或产生火焰或易燃气体。 (例如镁、钙、金属钠、连二亚硫酸钠、碳化钙、磷 (白色、黄色、红色、黑色)) X3 包括与湿气或空气反应的有机化学品,这些化学品会与空气或湿气剧烈反应,产生腐蚀性气体。 (例如乙酰氯、氯硅烷) X4 包括与湿气或空气反应的有机化学品,这些化学品会点燃或产生可在空气或水中自燃的气体。 (例如格氏试剂、甲基溴化镁、丁基锂、三乙基铝、湿润苦味酸 (三硝基苯酚)) X5 包括有机氧化化合物。 (即过氧化甲乙酮、过氧化苯甲酰、叔丁基过氧化氢)
叶片形态是水稻育种中最重要的农艺性状之一,因为它对作物产量有贡献。脱落的叶子(DR)突变体是由甲基磺酸乙酯(EMS)诱变从iLpum水稻品种开发的。与野生型相比,DR植物表现出下垂的叶子,伴随着一个小的Midrib,短圆锥体和植物高度降低。DR植物的表型是由编码GDSL酯酶的单个回收基因中的突变(LOC_OS02G15230)引起的。对野生型和DR序列的分析表明,DR等位基因将单个核苷酸取代(甘氨酸)携带为天冬氨酸。RNAi与DR突变产生了相同的表型,确认LOC_OS02G15230与DR基因相同。Sio 2的显微镜观测和植物营养分析表明,DR叶片中的二氧化硅比野生型叶片不那么丰富。这项研究表明,DR基因与二氧化硅沉积的调节有关,二氧化硅过程的破坏导致叶片表型下垂。
当前研究的目的是制定乙基纤维素和羟基丙基纤维素基于持续的释放微球,其中包含兰索拉唑作为模型药物。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。 通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。 药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。 制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。 将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。 通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。微球。粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。粒度的增加,乳化剂浓度增加(SPAN-80)。以增加的搅拌速度获得较小的尺寸。有趣的是,观察到粒径对体外药物释放没有显着影响。因此,乳化剂产生了更好的表面特征。使用F4公式观察到最高的夹带疗效,其表面活性剂浓度为0.5%,速度为1000 rpm,因此被选为最佳配方。随着恒定表面活性剂浓度下旋转速度的提高,观察到封装效率的提高。在持续旋转速度下的表面活性剂浓度增加会导致药物的封装效率降低。DSC数据表明该药物与两个聚合物之间没有相互作用,这也表明两种药物都分散在无定形状态的聚合物中。SEM研究表明,微球是球形形状,具有粗糙的表面形态,并且发现了颗粒。体外释放曲线在12小时内释放了兰索拉唑的缓慢而稳定的释放模式,发现该药物释放是扩散控制机制,具有Korsmeyer Peppas方程的N值表明非叶酸质量的非叶酸类型。由于这些实验的结果,得出结论,持续释放的微球持续释放的微球通过使用双重乳液 - 溶剂溶剂蒸发技术成功制备了使用乙基纤维素和羟基甲基纤维素作为聚合物的组合。
一般信息 ................................... 1-1 乙醇• 1-1 物理性质 i i i i i i i ii ii, i_i i_ii _ii 1-1 化学性质 ................................ 1-2 生理效应 ................................ 1-2 糠醇 ................................ 1-2 物理性质. ................................ 1-2 化学性质 ................................ 1-3 生理效应 ................................ 1-3 无水氨 ................................ 1-3 物理性质 ................................ 1-3 化学性质 ................................ 1-4 生理效应 ................................ 1-4 苯胺 ................................ 1-4 物理性质 ................................ 1-4 化学性质 .................................. 1-5 生理效应 .................................. 1-5 环氧乙烷 ................................ 1-6 物理性质 ................................ 1-6 化学性质 ................................ 1-7 生理效应 .................................. 1-7 液氟 ................................ 1-7 物理性质 ................................ 1-7 化学性质 ................................ 1-8 生理效应 .................................. 1-8 肼 ................................ 1-9 物理性质 ................................ 1-9 化学性质 ................................ 1-9 生理效应 .................................. 1-10 碳氢化合物 ................................ 1-10 物理性质 ................................ 1-10化学性质.................
PBLG 360 PEG 8 20 – 36% 67 MA 180 – 323 PEG 1 – 42 88 – 97 % 39 PLL 150 – 2200 PEG 22 – 113 48% 68 PLLGA 9 PEG 11 – 114 96 – 99% 38 PCEVE 845 PS 60 77% 35 a abbreviations for polymer backbones and side-chains: MA (methacrylate); nb(诺本烯); ONBA(氧苯甲烯酸酐); NBA(Norbornene赤道); p n ba poly(n-丙烯酸丁酯); pdmaema(聚(2-(二甲基氨基)甲基丙烯酸乙酯); PMMA(聚(甲基丙烯酸甲基甲基甲基甲基))); PLA(聚(乳酸)); PS(聚苯乙烯); P T Ba(p t ba(p t ba(t丁基丙烯酸酯)异氰酸酯); PBLG(聚(聚γ-苯甲酰-L-谷氨酸)); PEG(聚乙二醇)); PLL(Poly(L-赖氨酸)); PLLGA(γ-Poly(-propargy-l-谷氨酸)); PCEVE(聚(氯乙基乙烯基醚))
一种新合成的(碳硫硫醇)阿沙氨酰胺衍生物N1,N2-双(2 - ((((((2 - (((2 - ((((2 - ((((2 - ))使用FT-IR,1 H-NMR和13 C-NMR证明了化学结构。根据体重减轻(WL),电力动力学极化(PDF)和电化学阻抗光谱(EIS)技术,合成抑制剂表现出较高的腐蚀抑制效率。腐蚀速率降低,抑制效率随抑制剂的浓度线性增加,在0.01m时达到93.3%。bis n的吸附遵守langmuir的吸附等温线。计算出的吸附等温线参数∆ g ads是一个负值等于至10.14 kJ/mol,这表明双n被吸附在铜表面上并实现自发过程。使用密度功能理论(DFT)评估BIS N对金属保护增强的效率。还包括对量子不同描述符的评估和讨论。关键字:铜腐蚀;抑制;电位动力学极化;电化学阻抗;氯化钠; DFT。