解决方案爱默生的分销商Matco Malaysia已对49位来自Emerson的电动执行器进行了全面的预防性维护(PM),这构成了该设施基础设施的关键部分。维护活动涵盖了一系列细致的任务,旨在确保电动机操作阀的最佳性能和耐用性。关键任务包括对外表面,控制系统和MOV功能的彻底检查,以检测磨损和降解的迹象。团队还对机械紧固件进行了紧密检查,并连接了结构完整性。此外,还进行了终端,电动机和电子隔室中O形圈的检查和替换,以恢复密封效率。为了促进平滑阀的操作,清洁并重新涂抹了阀杆和执行衬套。
本文解决了石蜡矿床的问题,特别关注预防化学方法。在高能油生产中使用的抑制剂的有效性取决于其注入点,因此需要将试剂更深入地放置在“油储层孔”系统中。这项研究的目的是开发一种用于长期蜡抑制的方法,并通过实验评估井操作参数对抑制剂释放速率中生产液的影响。文章概述了一种石蜡抑制技术,该技术涉及将固体多孔颗粒注射到液压裂缝中,该骨折具有双重目的,既可以作为proppant和抑制剂来源。已经开发了一种方法,该方法是用固体乙烯 - 乙酸乙烯酯(EVA)饱和的多孔陶瓷颗粒,该方法在被油洗涤时逐渐释放到油流中,起作用,作为抑郁剂。过滤实验表明,这种抑制方法将抑制剂长期释放到油流中。即使过滤470孔量,通过模型支撑盒过滤的机油样品中的EVA含量仍保持在最小有效浓度水平上。从而减少了旨在防止和去除“石油储层”系统中的石蜡沉积物的干预频率。
乙二醇是汽车防冻剂和各种家庭和工业产品中的共同组成部分,无论是意外还是故意的,都会在摄入时构成重大健康风险。以严重的代谢性酸中毒,草酸钙晶体的形成和各种末端器官损伤,乙烯乙二醇毒性的特征是致命的,其潜在致命剂量估计为1500 mg/kg。母体化合物具有渗透活性,导致有害代谢物的产生,例如乙酸和草酸,这有助于代谢性酸中毒,肾毒性和心脏毒性。急性管理策略涉及支持性护理,将fomepizole作为竞争性酶抑制剂的管理以及通过透析消除肾脏。此外,乳酸间隙是乙二醇中毒中重要的诊断工具,突出了测量和预期乳酸水平之间的差异,这可能表明代谢性酸中毒和组织灌注不足。,我们提出了一例乙二醇中毒的病例,尽管启动治疗以及可能使用乳酸间隙来预测严重程度,但心脏骤停复杂。
术语AAMI的定义 - 医疗仪器行动级别的提升协会 - OSHA 29 C.F.R.中的定义§§1910.1047,动作水平是空降ETO的浓度为0.5 ppm,计算为8小时的时间加权平均值。超出OSHA动作级别将导致以下内容:个人空气监控,信息和培训计划,医疗监视计划和警告标签。ANSI - American National Standard Institute ATSDR – Agency for Toxic Substances and Disease Registry CDC – Centers for Disease Control and Prevention DCI – Data Call-In DRA – Draft Risk Assessment EBH - Ethylene bromohydrin ECH - Ethylene chlorohydrin EDSP – Endocrine Disruptor Screening Program EG - Ethylene glycol EPA – Environmental Protection Agency ESA – Endangered Species Act EtO – Ethylene Oxide FDA – Food and Drug Administration FDA CDRH – Food and Drug Administration, Center for Devices and Radiological Health FDA CFSAN – Food and Drug Administration, Center for Food Safety and Applied Nutrition FDA-HFP – Food and Drug Administration, Human Foods Program (Formerly CFSAN) FIFRA – Federal Insecticide, Fungicide, and Rodenticide Act FWP – Final Work Plan ID – Interim Decision NESHAP – National Emission Standards危险空气污染物NIOSH - 国家职业安全与健康研究所 - 空气和辐射办公室 - 农药计划OSHA办公室 - 职业安全与健康管理局PBZ - 个人呼吸区PEL - OSHA 29 C.F.R.§1910.1047,PEL或允许的暴露限制,是工人的暴露限制,基于8小时的加权平均值(TWA)设置为百万分之1(ppm)。twa - 时间加权平均超出OSHA PEL的范围将导致以下内容:书面合规计划,受管制区域和呼吸器使用。 PID - 拟议的临时决策PWP - 第29 c.f.r.中定义的初步工作计划Stel- §1910.1047,Stel或短期暴露限制,是根据15分钟的时间加权平均值(TWA)设置为5份的工人暴露限制(PPM)。 OSHA还将此值称为偏移限制。 超出OSHA Stel的性能将导致以下内容:个人空气监控,信息和培训计划,警告标签,书面合规计划和受监管领域。超出OSHA PEL的范围将导致以下内容:书面合规计划,受管制区域和呼吸器使用。PID - 拟议的临时决策PWP - 第29 c.f.r.中定义的初步工作计划Stel-§1910.1047,Stel或短期暴露限制,是根据15分钟的时间加权平均值(TWA)设置为5份的工人暴露限制(PPM)。OSHA还将此值称为偏移限制。超出OSHA Stel的性能将导致以下内容:个人空气监控,信息和培训计划,警告标签,书面合规计划和受监管领域。
在工作中研究了2,2' - [乙烷-1,2dylbis(oxy)]二苯甲甲醛(N),硫代甲苯二硫酸盐配体(W)及其金属配合物在工作中。通过在DMF培养基中反应水杨醛和碳酸钠,在两个阶段完成合成反应,然后加入1,2-二溴乙烷当量。通过混合氢氮和CS 2,合成了W。配体(W)是通过将乙醇金属氯化物溶液添加到金属离子集合中产生的。之后,将配体N引入并溶解。在(0.5 m n:w)摩尔比以创建五种新型化合物的DMF中。使用物理化学技术(FT-IR,电子光谱分析,质量,¹-NMR和13 C-NMR光谱,元素分析,磁敏感性和摩尔浓度),验证合成化合物的孤立组成实体(电导率)。基于表征数据,形成了具有化学式[MLCL 2]的八面体化合物。当M = CO(LL),Ni(LL),Cu(LL),Zn(LL)和CD(LL)(LL)时,将标题成分(配体和复合物)的抗菌作用评估为抗氧化剂。结果表明,相对于L.
羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
摘要。该研究的目的是确定添加与EG(乙二醇)结合的墨氧化物(GO)流体或水可能会增加汽车辐射器中热的转移。散热器是汽车冷却系统的重要部分;他们消散发动机产生的额外热量。常规冷却剂转运温度的容量受到限制,包括乙二醇和水。使用纳米颗粒流体可以提高传导热量的能力,纳米颗粒流体基本上是碱基中颗粒的溶液。该技术使用乙二醇和水来通过分散GO颗粒来形成纳米颗粒流体。使用实验,描述了纳米颗粒流体的弹性或热特征。接下来,使用早期版本的辐射器布置,进行了许多传热测试。与传统冷却剂相比,在利用GO纳米颗粒流体的同时,已经评估了散热器在各种功能情况下散发热量的能力。将散热器的传热效率与普通的乙二醇进行比较(或最初的结果表明与GO纳米颗粒液的添加可改善它。增加了纳米颗粒流体组合中的热导率,从而导致更有效的热量耗散。为了确保在汽车冷却机制上有效利用纳米颗粒流体,在长期暴露于升高温度时,可以进一步评估它的耐用性。本研究的持续尝试为汽车应用提供了最先进的冷却系统。结果表明,与常规冷却剂结合使用GO纳米颗粒流体有机会提高汽车散热器的热传递或一般效率。
1机械工程系,穆罕默迪亚·马吉兰大学。Mayjend Bambang Soegeng KM 5 Mertoyudan,Magelang,Jawa Tengah,印度尼西亚2冶金研究中心,Brin GD.720。KST B.J.Habibie,Puspiptek地区,Serpong,Tangerang Selatan,Banten,Indonesia电子邮件:raha006@brin.go.id; habibi@unimma.ac.id摘要一个快速冷却过程对于保持车辆的最佳工作温度至关重要,这直接影响其效率。腐蚀是使用水基流体的冷却系统中的持续且必然的破坏。当前的挑战是探索不仅表现出极好的耐腐蚀性,而且具有优异的热传导性能以提高车辆效率的水性流体。这项研究研究了以其腐蚀性抑制特性而闻名的石墨烯掺入乙二醇/水溶液中,以评估其在AL6061材料上的保护效果。一系列分析方法,包括光发射光谱(OES),PH,电导率,傅立叶转换红外光谱(FTIR)和极化技术,用于评估各个浓度和不同环境温度下氧化石墨烯的腐蚀抑制性能。结果显示,随着氧化石墨烯浓度的增加,pH值和电导率降低。FTIR分析证实了在AL6061表面的保护层的形成。对浸入乙二醇/水混合物的AL6061样品对氧化石墨烯浓度为0、0.03%,0.05%和0.10%进行了腐蚀速率评估。在冷却系统中添加氧化石墨烯时的腐蚀速率显着降低:在30°C下,速率降低至4.620、3.308、2.565和1.006 mpy;在40°C,最高为4,728、2,541、1,503和1,270 mpy;在50°C时,最高为5.629、1.146、2.947和1.441 MPY,相应的氧化石墨烯浓度分别为0.03%,0.05%和0.1%。实验数据证实,氧化石墨烯有效降低了乙烯甘油/水混合物中Al6061的腐蚀速率。该研究得出的结论是,将氧化石墨烯用作腐蚀抑制剂明显提高了Al6061在乙烯乙二醇/水中的耐药性和性能,氧化石墨烯通过生理过程有助于这种保护机制。关键字:乙二醇,氧化石墨烯,冷却系统,AL 6061,腐蚀抑制剂
摘要:乙烯与极性单体的直接共聚以产生功能性聚集素,由于其简单的操作过程和可控的产品微观结构,因此仍然具有很高的吸引力。低成本的镍催化剂已在学术界广泛使用,用于合成极性聚乙烯。但是,适合工业生产条件的高温共聚催化剂的发展仍然是一个重大挑战。由最终共聚物分类,本综述提供了镍复合物在过去五年中较高温度下催化镍复合物的研究进度的综合摘要。乙二醇丙烯酸酯共聚物,乙二醇 - 丙烯酸丁酯共聚物,乙烯 - 其他基本极性单体共聚物和乙烯 - 特殊极性单体共聚物的聚合结果彻底总结了。所涉及的镍催化剂包括磷酸 - 苯酸酯类型,双膦氧化物类型,磷酸 - 键盘型,磷酸苯甲胺类型和磷酸 - 二元酸酯类型。通过这些催化剂的有效调节,分子量,分子量分布,分子量分布,熔点和极性单体掺入比例进行了结论和讨论。它揭示了催化剂系统的优化主要是通过催化剂结构的理性设计,额外的添加剂引入和单位催化剂异质化实现的。因此,一些出色的催化剂能够产生与商业产品非常相似的极性聚乙烯。要实现工业化,必须进一步强调高温共聚系统的基本科学以及所得的极性聚乙烯的应用性能。
摘要:在锂离子电池运行期间,(电)化学侧反应发生在细胞内,可以促进或降解性能。这些复杂的反应在固体,液体和气相中产生副产品。在这三个阶段中研究副产品可以帮助优化电池寿命。要将测得的气相副产品与溶解在液相中的物种相关联,需要等于亨利法律常数等均衡礼节。本工作实施了一个压力衰减实验,以确定乙烯(C 2 H 4)(C 2 H 4)和二氧化碳(CO 2)之间的热力学平衡浓度,它们是在Li-Ion中通常产生的两种气体,其电池在3:7 wt/wt/wt/wt/wt的电池中均为1.2 m lipf 6:碳酸氟乙二烯(15:25:57:3 wt%总成分)。实验测量的压力衰减曲线适合分析溶解模型,并外推以预测平衡时的最终压力。然后使用= k C H 2 4 2.0×10 4 kPa的亨利定律常数和k co d 2 = 1.1×10 4 kpa的用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。 这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。 ■简介用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。■简介