易感性风险生物标志物(包括种系) - 跌落,功能恶化诊断:早期检测,病因(原因是什么)预后:事件的概率 - 复发,进展,生存。预测:灵敏度 - 给定的干预措施将起作用。抵抗 - 从头开始 - 不给什么,干预 +统计设计
多囊卵巢综合征(PCOS)是最常见的内分泌疾病,影响了全球多达15%的生殖年龄妇女(1)。这种高度遗传,复杂的遗传疾病的特征是生殖和代谢异常的可变星座,导致了年轻女性中最多的不孕症和2型糖尿病(T2D)的大多数病例(1)。Clinically, the National Institutes of Health (NIH) criteria ( 2 ) and the Rotterdam criteria ( 3 , 4 ), the commonly used diagnostic criteria for PCOS, are based on the presence of at least two of three phenotypes: hyperandrogenism (HA), chronic oligo/anovulation or ovulatory dysfunction (OD), and polycystic ovarian morphology (PCOM) ( 2 – 4)。值得注意的是,目前在2023年发表的鹿特丹标准中描述了PCOS患者的选择,该标准还包括升高的睾丸激素和免费睾丸激素水平,除了先前引用的标准外。尽管PCOS的诊断标准中存在这些大量的病毒和显着进步,但考虑到PCOS病因的基本机制仍然很少了解,PCOS的患病率仍然上升(1)。除了影响生育能力之外,患有PCOS的个体的可能性升高了肥胖,胰岛素抵抗和代谢性疾病的可能性升高,所有这些都与线粒体功能障碍相互联系(6)。线粒体是负责能量产生的细胞器,是细胞ROS(活性氧)的主要来源,因此可能导致氧化应激损伤。到目前为止,PCOS患者中发现了33个相关的MTDNA突变。因此,线粒体生成的氧气已被认为是PCOS病因的关键因素(6)。有趣的是,PCOS患者已鉴定出mtDNA中的突变,即使它们在PCOS中的病因作用需要进一步研究,它们可能在PCOS病因和发病机理中起重要作用。在这些mtDNA突变中,大多数突变(在33个中的20个)被鉴定在D-Loop调节区域中,这表明
摘要:额颞痴呆(FTD)涉及以行为,语言和移动性异常为特征的疾病,额叶和颞叶的神经变性导致。ftd代表了早期痴呆症的第二常见病因,并以广泛的临床特征为特征。的确,确实有三种临床变异是众所周知的:行为变异(BVFTD),这是最普遍的,主要与人格和行为变化相关的,语义变异的原发性渐进失语(SVPPA),这与语音完整性和单词含义和非属性的原始渐进式(NFVA)的逐渐丧失相关(SVPPA)(nfva)逐渐丧失(言语和异常声音。约有15%的FTD患者还具有另一种神经退行性运动神经元疾病,肌萎缩性侧索硬化症(ALS),并且这种共发生称为FTD-ALS。大约一半的FTD病例是家族性的。家族性FTD的最常见观察到的遗传模式是常染色体显性。到目前为止,至少有十个因果基因与FTD的病因有关。这些基因中的三个:微管相关蛋白tau(MAPT),progranulin(GRN)和9个开放式阅读框架72(C9orf72)是最常见的,并且负责一半以上的家族性FTD。剩余的基因很少有报道,其中许多基因尚不清楚。应确定家族性FTD比例的其余原因以及零星的FTD。我们得出的结论是,尽管发现了FTD的病因,但大多数工作仍在完成。发现的因果FTD基因为更好地理解FTD的临床和遗传异质性提供了见解,并有助于其早期和正确的诊断。尽管当前的FTD管理主要依赖于支持治疗,但一些有前途的临床试验显示出有希望的结果,可以纠正突变基因引起的有害影响。
目前,尽管对个体疾病病因和治疗方法的理解十分有限,但需求仍然很大。为了填补这一空白,我们提出了一种新颖的计算流程,收集有效的疾病基因协作途径,以设想个性化的疾病病因和治疗方法。我们的算法从头构建了个性化的疾病模块,这使我们能够阐明突变基因在特定患者中的重要性,并了解这些基因在患者之间的合成渗透性。我们发现,臭名昭著的癌症驱动因素 TP53 和 PIK3CA 的重要性在乳腺癌中波动很大,在具有不同突变数量的肿瘤中达到峰值,而罕见突变的基因(如 XPO1 和 PLEKHA1)在特定个体中具有很高的疾病模块重要性。此外,个性化模块破坏使我们能够设计出因患者而异的定制单一和组合靶向疗法,这表明需要精准治疗流程。作为对从头个体化疾病模块的首次分析,我们通过对个体患病基因的活动提供新颖的深刻见解,展示了个体化疾病模块对精准医疗的强大作用。
和病理学)5。神经退行性疾病的类型6。 div>在正常认知衰老,MCI和D D痴呆症中,药理学和非药物治疗的概述了解了认知衰落的阶段。从正常的老年人开始,直到是痴呆症。了解认知能力下降的原因。了解在各个方面由神经退行性疾病引起的痴呆,包括病理学,病理学,疾病和其他检查,以及学习由神经退行性疾病引起的各种疾病,并了解对药物使用的治疗,而不是使用Demenia(BPSD)Chavit tumenia(BPSD)Chavit tumenia tumenia tumenia tumenia tumenia tumenia tunvirachaiSak ulachaisakul,M.D.D.D.D.D.D.D。 1。患病率2。病因3。BPSD的症状4。 div>考试和评估5。BPSD的治疗和管理 div>
摘要嗜酸性粒细胞及其介质在各种反应状态中起着至关重要的作用,例如细菌和病毒感染、慢性炎症性疾病和某些血液系统恶性肿瘤。根据潜在病理、分子缺陷以及所涉及的细胞因子和介质级联,外周血和组织嗜酸性粒细胞增多症 (HE) 可能会发展并可能导致器官功能障碍甚至器官损伤,这通常会导致 HE 综合征 (HES) 的诊断。在这些患者中,有些患者的 HE 病因和影响仍不清楚。这些患者被诊断为特发性 HE。在其他患者中,HES 被诊断但病因仍然未知 — 这些患者被归类为特发性 HES。对于患有 HES 的患者,早期使用减少嗜酸性粒细胞计数的药物进行治疗通常可以有效避免不可逆的器官损伤。因此,系统地探索各种诊断标记并正确识别疾病诱发因素和病因非常重要。根据潜在疾病的存在和类型,HES 可分为原发性(克隆性)HES、反应性 HES 和特发性 HES。大多数此类患者都可以接受有效的治疗。本文概述了嗜酸性粒细胞相关疾病的发病机制,特别强调了 HE 和 HES 的分子、免疫学和临床复杂性。此外,本文根据该领域的新发展回顾了嗜酸性粒细胞疾病的诊断标准和分类。
摘要:基因异常在神经退行性疾病 (NDD) 的发展中起着至关重要的作用。基因探索确实有助于揭示导致各种 NDD 病因和进展的分子复杂性。NDD 中罕见和常见变异的复杂性导致人们对与之相关的遗传风险因素的了解有限。下一代测序技术的进步使全基因组测序和全外显子组测序成为可能,从而可以识别具有重大影响的罕见变异,并提高对孟德尔和复杂神经系统疾病的理解。基因治疗的复兴有望针对疾病的病因并确保持续的纠正。这种方法对于神经退行性疾病尤其有吸引力,因为传统的药理学方法已经无法满足需求。在探索三种最常见的 NDD(肌萎缩侧索硬化症、阿尔茨海默病和帕金森病)的遗传流行病学的背景下,我们的主要目标是强调下一代测序技术的发展。这一进展旨在增强我们对疾病机制的理解,并探索 NDD 的基因疗法。在整个审查过程中,我们重点关注遗传变异、识别方法、相关病理生理学以及基因治疗的潜力。最终,我们的目标是为 NDD 这一新兴研究领域提供全面而前瞻性的视角。
今年为期一年的计划将帮助讲师对急性和慢性肾脏疾病的流行病学,病因,病理生理学以及管理的更深入了解,并对肾脏替代疗法和其他体外治疗有复杂的了解。新型体外疗法和改善患者护理的持续发展导致人们对追求重症监护肾脏病作为职业道路的兴趣越来越大。该计划是针对小儿重症监护,小儿肾脏病或围产期/新生儿医学研究金的毕业生。
参考文献1。Dela Monte SM,Wands Jr。阿尔茨海默氏病是经过3型糖尿病的证据。J糖尿病SCI技术。2008; 2(6):1101-13。 2。 Salas IH,De Strooper B.糖尿病和阿尔茨海默氏病:这种联系并不像看起来那么简单。 Neurochem res。 2019; 44(6):1271-8。 3。 Xue A,Wu Y,Zhu Z,Zhang F,Kemper KE,Zheng Z等。 全基因组关联分析确定了2型糖尿病的143种风险变异和推定的调节机制。 nat Commun。 2018; 9(1):2941。 4。 Bellenguez C,Kucukali F,Jansen IE,Kleineidam L,Moreno-Grau S,Amin N等。 对阿尔茨海默氏病和相关痴呆症的遗传病因的新见解。 nat Genet。 2022; 54(4):412-36。 5。 Kunkle BW,Grenier-Boley B,Sims R,Bis JC,Damotte V,Naj AC等。 对被诊断的阿尔茨海默氏病的遗传元分析确定了新的风险基因座,并暗示了Abeta,Tau,免疫和脂质加工。 nat Genet。 2019; 51(3):414-30。 6。 Hao K,Di Narzo AF,Ho L,Luo W,Li S,Chen R等。 共享阿尔茨海默氏病和2型糖尿病的基础遗传病因。 摩尔方面医学。 2015; 43-44:66-76。2008; 2(6):1101-13。2。Salas IH,De Strooper B.糖尿病和阿尔茨海默氏病:这种联系并不像看起来那么简单。Neurochem res。2019; 44(6):1271-8。 3。 Xue A,Wu Y,Zhu Z,Zhang F,Kemper KE,Zheng Z等。 全基因组关联分析确定了2型糖尿病的143种风险变异和推定的调节机制。 nat Commun。 2018; 9(1):2941。 4。 Bellenguez C,Kucukali F,Jansen IE,Kleineidam L,Moreno-Grau S,Amin N等。 对阿尔茨海默氏病和相关痴呆症的遗传病因的新见解。 nat Genet。 2022; 54(4):412-36。 5。 Kunkle BW,Grenier-Boley B,Sims R,Bis JC,Damotte V,Naj AC等。 对被诊断的阿尔茨海默氏病的遗传元分析确定了新的风险基因座,并暗示了Abeta,Tau,免疫和脂质加工。 nat Genet。 2019; 51(3):414-30。 6。 Hao K,Di Narzo AF,Ho L,Luo W,Li S,Chen R等。 共享阿尔茨海默氏病和2型糖尿病的基础遗传病因。 摩尔方面医学。 2015; 43-44:66-76。2019; 44(6):1271-8。3。Xue A,Wu Y,Zhu Z,Zhang F,Kemper KE,Zheng Z等。全基因组关联分析确定了2型糖尿病的143种风险变异和推定的调节机制。nat Commun。2018; 9(1):2941。4。Bellenguez C,Kucukali F,Jansen IE,Kleineidam L,Moreno-Grau S,Amin N等。对阿尔茨海默氏病和相关痴呆症的遗传病因的新见解。nat Genet。2022; 54(4):412-36。5。Kunkle BW,Grenier-Boley B,Sims R,Bis JC,Damotte V,Naj AC等。对被诊断的阿尔茨海默氏病的遗传元分析确定了新的风险基因座,并暗示了Abeta,Tau,免疫和脂质加工。nat Genet。2019; 51(3):414-30。 6。 Hao K,Di Narzo AF,Ho L,Luo W,Li S,Chen R等。 共享阿尔茨海默氏病和2型糖尿病的基础遗传病因。 摩尔方面医学。 2015; 43-44:66-76。2019; 51(3):414-30。6。Hao K,Di Narzo AF,Ho L,Luo W,Li S,Chen R等。 共享阿尔茨海默氏病和2型糖尿病的基础遗传病因。 摩尔方面医学。 2015; 43-44:66-76。Hao K,Di Narzo AF,Ho L,Luo W,Li S,Chen R等。共享阿尔茨海默氏病和2型糖尿病的基础遗传病因。摩尔方面医学。2015; 43-44:66-76。2015; 43-44:66-76。
