在欧洲,负责实施 MRA 的组织是欧洲测量标准合作组织 (EUROMET)。EUROMET 是欧盟和欧洲自由贸易联盟(包括欧盟委员会)国家计量机构 (NMI) 之间的合作自愿组织。IAEA、BIPM 和 IRMM 也是 EUROMET 的成员。在北欧国家,丹麦、芬兰、挪威和瑞典的剂量测定实验室是 NMI。他们各自都有一个指定的联系人 (CP),参加每年的 EUROMET 电离辐射技术委员会 (TC-IR) CP 会议。有关详细信息,请参阅附录 3。1976 年,IAEA 与世界卫生组织 (WHO) 共同建立了 SSDL 网络,称为 IAEA/WHO SSDL 网络。SSDL 是由国家主管部门指定的实验室,负责为该国用户提供辐射剂量与国家/国际标准可追溯性的必要联系。SSDL 配备了可追溯到剂量实验室一级标准 (PSDL) 的二级标准 (电离室)。丹麦、芬兰、挪威和瑞典于 20 世纪 70 年代加入了 SSDL 网络。SSDL 的功能是根据对已批准测量标准的可追溯性履行全国计量功能。附录 4 给出了 IAEA/WHO SSDL 网络中 SSDL 的地位要求。
最后,计划提出一个 Euromet 项目,对欧洲目前可用的商业标准解决方案进行验证。市场上有相当数量的 pH 缓冲溶液。然而,很少有人能保证其可追溯性。该项目应该能够评估欧洲水平标准解决方案的准确性。 LNE 需要进行重大开发,特别是主要参考材料的生产和二次 pH 池的创建,以实现更快的测量。这些主要材料和辅助工作台的开发必须在 2006 年开始,以便该项目可以在 2007 年 2 月 Metchem 举行的 Euromet 化学计量会议上展示。
H ermier y.、bynier G.、C Hymenti V.、del c ampo d、tichy m.、m arcairino p.、s ten ppm、d emathteis r.、filipe e.、r auta C.、de g root MJ、n ielsen j. ellmuth B.、t hiele -k rivoj B.、b Ojkovski J.、I Varsson J.、k Alemci M. et u gur S.,“在 euromet 项目 n° 004 框架内对氩三相点池进行比对”,克罗地亚杜布罗夫尼克,6 月 22-26 日
1998 年,在澳大利亚悉尼 CSIRO-NML 举行的 CCM 力工作组会议 7 上,概述了力的关键比较程序。为这些比较选择了四个力范围:10 k N、100 kN、1 MN 和 4 MN。为了将参与任何比对的机构数量保持在可控范围内,从四个区域计量组织 (RMO) 中选择了特定机构:美洲计量系统 (SIM)、欧洲计量标准合作组织 (EUROMET)、亚太计量计划 (APMP) 和南非发展合作区域计量组织 (SADCMET)。为了最好地适应参与机构不同的力标准机容量,将四个力范围分为两组,其中一组 (A) 分配 100% 的力范围容量,另一组 (B) 分配 50% 的力范围容量。
引言 多年来,在辐射测温领域已进行了许多次国际温标比对。这些比对涉及钨带灯 1,2 、辐射温度计 3,4 或最近的金属碳共晶定点 5,6 的转移,旨在比较不同国家计量机构 (NMI) 的 ITS-90(1990 年国际温标)实现情况。每个实验室的温标实现都被赋予了不确定度,考虑到定点测量以及实现中所用任何人工制品的校准和测量不确定度等因素(例如,辐射温度计的线性度、稳定性、校准、光谱响应和源尺寸效应 (SSE);钨带灯或黑体辐射源的校准和稳定性),以得出温标实现的总体不确定度 7 。 EUROMET 658 项目旨在通过比较每个参与者使用其实验室常用方法进行的测量结果来调查温度标度实现中某些基本参数(辐射温度计的 SSE、线性度和光谱响应)的不确定性。此外,还要求参与者使用其研究所常用的软件计算多种不同设计的黑体腔的发射率。这样做是为了投资
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
1 简介 技术路线图是一种规划过程,用于协调预测的工业和社会需求以及满足这些需求所需的科学研究和开发。它与业务路线图相结合,后者还包括市场预测和资源需求。这些技术现在已广泛应用于工业和政府,但最初用于电子行业,其中半导体路线图 1 仍然是最常被引用的成功案例。我们的路线图显示了实现给定目标必须应对的技术挑战,在文献中通常称为新兴技术路线图。每个路线图都显示了通过应对不同挑战来实现目标的替代路线,因此它不是项目计划或任何一方遵循特定路径的承诺,但它允许不同的组织为自己的研究和开发设定优先事项,以便在必要的时间提供所需的输出,为最终目标做出贡献。它还鼓励技术链中同一路径上的组织之间的协作,以确保有效和高效地应对挑战。路线图提出的是挑战而不是解决方案,它们是动态的,应该不断更新以反映最新的机会,以便能够发现意想不到的事情。这些路线图是高层次的战略观点,需要更详细的路线图和其他计划