t GEORETICY L ENSresearch m otivationr Esarch Q Euse 21s ummary of r eserch d esist 22d ata nilysiss tuctural e蛋p rocredulal e蛋t Georatey c on tribitions and d rections f yarch 27
安培使用铁粒子来可视化永磁体周围的磁条纹场。该技术的现代形式被称为 Bitter 磁装饰,由 Bitter、Hamos 和 Thiessen 于 1931 年首次应用。超导体研究促进了磁光成像的进一步发展,当时法拉第效应 [1] 首次用于此目的,使用磷酸盐玻璃和 EuS、EuF 2 和 EuSe [2,3] 薄膜。1957 年磷酸盐玻璃的应用成为磁光成像的重大突破,因为它首次实现了磁场强度的可视化,而不仅仅是条纹图案。然而,由于这种玻璃的维尔德常数很低,获得的磁光对比度很弱,必须使用厚玻璃层来增加它,这导致空间分辨率低。相反,EuS、EuF 2 和 EuSe 薄膜具有较大的维尔德常数(尤其是 EuSe 薄膜),因此薄膜(低于 1 m)可以产生足够高的磁光对比度,从而可以实现接近光学分辨率极限的高空间分辨率。但是,这种薄膜必须直接沉积在所研究的样品上,这使得整个过程困难且耗时。此外,这些薄膜仅在液氦温度下表现出磁光特性,这大大限制了它们的应用范围。另一种非常广泛使用的技术是磁光克尔效应 (MOKE) [4-9]。该技术不使用任何类型的磁性涂层,但磁光效应来自偏振光与样品本身的相互作用。因此,MOKE 可以提供高达光学极限的非常高的空间分辨率。缺点是样品通常需要特殊的表面处理,并且 MO 信号无法根据磁场进行校准,因为在没有样品的情况下无法测量参考信号。还有更多奇特的方法,例如使用趋磁细菌 [10,11] 和磁流体膜 [12]。虽然这些技术在可视化磁性微结构方面取得了成功,但无法校准,因此不能用于定量测量,也不适合标准化。
