根据此指导和时间范围预期,本文将有助于委员会指导公用事业公司为未来高 DER 实现电网现代化,并帮助委员会考虑一系列配电系统运营商的角色和职责,以确定最能快速发展电网能力和运营的 DSO 模型,以整合更高水平的 DER,实现该州 100% 清洁能源的目标。高 DER 程序的大部分范围旨在短期内进行更改,以改善配电规划和运营,从而实现 DER 的社会和费率价值最大化。本文通过对长期结构和运营变化的研究来补充这些短期努力。未来电网研究的一些结果可以为电网规划和运营的短期变化提供信息,但其中大部分必然侧重于长期变化。
作者:F Flandrin · 被引用 27 次 — NIST [14] 证明,如果硬盘的扇区数为奇数,著名的数据采集工具 dd [15] 就无法检索硬盘的最后一个扇区。
摘要。鉴于对最近的基于视觉模型的大规模多模式培训及其概括能力,因此了解其鲁棒性的程度对于他们的现实世界部署至关重要。在这项工作中,我们的目标是评估当前基于视觉模型的弹性,以应对不同的对象到后环上下文变化。大多数鲁棒性评估方法都引入了合成数据集,以引起对物体特征(观点,比例,颜色)的变化或实际图像上使用的图像转换技术(对抗性变化,常见的损坏),以模拟分离中的变化。最近的作品探索了利用大型语言模式和di!使用模型来产生背景变化。但是,这些方法要么缺乏对要进行的更改或扭曲对象语义的控制,从而使它们不适合任务。另一方面,我们的方法可以诱导各种对象兼容地面变化,同时保留对象的原始语义和对象的真实性。为了实现这一目标,我们利用文本对图像,图像到文本和图像对段的生成能力自动生成广泛的对象到背景的变化。我们通过修改文本提示或优化文本模型的潜伏期和Textual嵌入来引起自然和对抗背景的变化。这使我们能够量化背景上下文在理解深神经网络的鲁棒性和一般性中的作用。我们生产了各种版本的标准视觉数据集(Imagenet,Coco),将多样的和相同的背景纳入图像中,或在背景中引入颜色,纹理和对抗性变化。我们进行了彻底的实验,并对基于视觉模型的鲁棒性与对象之间的背景环境之间的鲁棒性进行了深入的分析。我们的代码和评估基准将在https://github.com/muhammad-huzaifaa/ObjectCompose上找到。
2型糖尿病(T2DM)的越来越多的患病率是由久坐的生活方式和不健康饮食引起的全球健康问题。超出血糖控制,T2DM会影响多个器官系统,从而导致各种并发症。传统上与心血管和微血管并发症有关,但新兴证据表明对肺部健康有显着影响。肺血管功能障碍和纤维化,其特征是在T2DM的个体中越来越认识到血管张力的改变和过度的细胞外基质沉积。T2DM的发作通常是糖尿病前期的,这是一种与糖尿病增加和心血管疾病风险有关的中等高血糖状态。本评论探讨了T2DM,肺血管功能障碍和肺纤维化之间的关系,重点是与糖尿病前期的潜在联系。肺血管功能,包括一氧化氮(NO),前列环蛋白(PGI2),内皮素-1(ET-1),血栓烷A2(TXA2)和血栓形成蛋白-1(THBS1)的作用,在T2DM和Prediaia的背景下进行了讨论。将T2DM与肺纤维化联系起来的机制,例如氧化应激,失调的固定信号传导和慢性炎症。突出显示了糖尿病前期对肺部健康的影响,包括内皮功能障碍,氧化应激和失调的血管活性介质。早期检测和糖尿病阶段的干预可能会减少与T2DM相关的呼吸并发症,从而强调针对血糖调节和血管健康的管理策略的重要性。需要进行更多研究T2DM和糖尿病前期肺并发症的机制。
随着生成模型的发展,生成图像的评估变得越来越重要。先前的方法测量参考文献和从训练有素的VI-SION模型产生的图像之间的距离。在本文中,我们对表示图像周围的表示空间与输入空间之间的关系进行了广泛的影响。我们首先提出了与图像中不自然元素存在有关的两项措施:复杂性,这表明表示空间的非线性和脆弱性是与对抗性输入变化的轻易变化相关的脆弱性。基于这些,我们为评估称为异常评分的图像生成模式(AS)进行了新的指标。此外,我们提出了可以有效地评估生成的图像的AS-I(单个图像的异常得分)。实验性依据证明了所提出的方法的有效性。
人工智能 (AI) 和机器学习 (ML) 在医疗保健领域的融合彻底改变了疾病诊断,为早期发现、提高准确性和个性化治疗提供了潜力。本文评估了各种 ML 算法在诊断多种疾病(包括心血管疾病、癌症、神经系统疾病和传染病)方面的有效性。通过分析关键的监督和非监督学习算法(如支持向量机、随机森林、神经网络和 K 均值聚类),本研究探索了它们在临床环境中的应用、优势和局限性。评估指标包括准确度、精确度、召回率和 AUC,用于评估这些算法的性能。本文还强调了人工智能诊断面临的重大挑战,例如数据质量、模型的可解释性、道德考虑以及与临床工作流程的集成。最后,它探讨了人工智能在疾病诊断中的未来前景,强调了深度学习、个性化医疗和人工智能与人类协作模型的进展。研究结果强调了人工智能在提高诊断效率方面的变革作用,同时也承认需要进一步研究、道德监督和监管框架以确保安全和公平实施。