在模型中分析了包括非电力部门的整个系统。发电量取决于诸如以下因素(例如:社会结构变化)引起的能源需求变化(尽管基本上取决于社会经济途径,这取决于社会经济途径] + [通过能量使用结构变化() +降低电力降低(通过电力节省)[通过电力节省()] + [非电动性需求的电气增长(FAILE(VING)的损失增加了供应 + [Evation + [Evation Fation Fation Fation Fative + [E. G.)的损失。产生绿色氢和电子燃料的电力需求(Syn。fuels)()(但是,在海外制造的情况下,日本的电力需求不会受到影响)]。
摘要 一台高分辨率数字 300 帧相机飞越安大略省多伦多的一个试验场,以获取重叠图像以确定高程。分析了一对选定的 1320 x 1035 图像,总面积为 0.91 x 1.0a 平方公里,像素为 0.69 平方米。对图像中的 24 个点进行了实地测量,并应用了光束平差算法,仅使用三个控制点对图像进行相对和绝对定位。残差的加权平均 IIMS 误差为 1.138m (x)、t.sgom (y) 和 0.927m (z),总高程变化为 40m。尽管存在一些限制,例如缺乏相机校准,但仍获得了这种水平的精度。图像点选择困难,图像运动。这些结果鼓励进一步研究改进该技术并将其应用于大规模评估模型的开发。
摘要。现代遥感技术获取的全球和区域高程数据集的可用性为显著提高河流测绘的准确性提供了机会,尤其是在偏远、难以到达的地区。从数字高程模型 (DEM) 中提取河流基于流量累积计算,这是一个汇总参数,当应用于遥感技术生成的大型、嘈杂的 DEM 时,会带来性能和准确性挑战。对 DEM 洼地的稳健处理对于从此类数据中可靠地提取连接的排水网络至关重要。在 GRASS GIS 中作为模块 r.watershed 实现的最低成本流量路由方法经过重新设计,以显著提高其速度、功能和内存要求,并使其成为从大型 DEM 进行河流测绘和流域分析的有效工具。为了评估其对大型洼地(典型的遥感 DEM)的处理能力,我们比较了三种不同的方法:传统洼地填充法、影响减少法和最小成本路径搜索法。比较使用航天飞机雷达地形任务 (SRTM) 和干涉合成孔径雷达高程 (IFSARE) 数据集进行,这些数据集分别覆盖巴拿马中部,分辨率为 90 米和 10 米。精度评估基于 GPS 获取的地面控制点和从选定巴拿马河流沿岸的 Landsat 影像数字化的参考点。结果表明,最小成本路径方法的新实现比原始版本快得多,可以处理大量数据集,并根据参考点验证的河流位置提供最准确的结果。
