我们在南池住了两晚,以便适应海拔高度,因为我们现在的海拔超过 3,000 米。为了帮助您的身体适应高海拔,我们遵循“爬高,睡低”的黄金法则进行散步。我们有几种从南池出发的一日游选择。第一种选择是长途步行到 3,800 米的 Thame 村,然后返回南池,需要 7 到 8 个小时。如果您喜欢短途步行,您可以参观海拔 3,800 米的 Everest View 酒店。这大约需要 4 个小时,您还可以参观 Khumjung 村。您应该听从身体的召唤,不要在步行时用力过猛。在高海拔地区有时间休息是适应过程的重要组成部分。我们有足够的导游,因此,如果需要,我们可以为团队的不同成员组织这两次徒步。
在本文中,我们量化了SGR a *的地平尺度发射的时间变异性和图像形态,如EHT在2017年4月的波长1.3 mm所示。我们发现,SGR A *数据表现出可变性,超过了数据中的不确定性或星际散射的影响所能解释的。这种变异性的大小可能是相关孔密度的很大一部分,在某些基准线上达到约100%。通过对简单几何源模型的探索,我们证明了与其他具有可比复杂性的形态相比,环类形态为SGR A *数据提供了更好的拟合。我们开发了两种策略,以将静态几何环模型拟合到Time-sgr a * data;一种策略将模型拟合到源是静态并平均这些独立拟合的数据的简短段,而其他拟合模型则使用参数模型与平均源结构围绕结构可变性功率谱的参数模型进行完整数据集。几何建模和图像域特征提取技术都确定环直径为51.8±2.3μ,为(68%可靠的间隔),环形厚度约束,其FWHM的FWHM约为30%和50%。要将直径测量值提高到共同的物理尺度,我们使用GRMHD模拟产生的合成数据对其进行了校准。该校准将重力半径的角度大小限制为 - + 4.8 0.7 1.4μAS,我们将其与Maser视差的独立距离测量结合在一起,以确定SGR A *的质量为´ - + 4.0 10 10 0.6 1.1 6 1.1 6 M e。统一的天文学词库概念:黑洞(162)
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
摘要 算法系统和人工智能在新闻制作中的日益普及引发了人们对记者是否有能力以不违背新闻规范和价值观的方式理解和使用它们的能力的担忧。这种“可理解性”问题对于公共服务媒体来说尤其严重,因为这种复杂而不透明的系统可能会扰乱问责制、决策和专业判断。本文通过文件分析和对 14 名记者的访谈,概述了人工智能在 BBC 新闻制作中的部署,并分析了记者如何理解人工智能和算法。我们发现日益普及的人工智能与 BBC 记者的理解水平之间存在脱节,他们用猜测和想象来代替对这些技术的准确概念。这可能会限制记者有效和负责任地使用人工智能系统的能力,质疑其产出和在新闻制作中的作用,或者适应和塑造它们,也可能妨碍对人工智能如何影响社会进行负责任的报道。我们建议 PSM 在个人、组织和社区三个层面制定促进人工智能可理解性和素养的策略,并且我们从社会文化角度而不是单纯的技术角度重新定义人工智能可理解性问题,以便更好地解决规范性考虑。
事件传感器提供高时间分辨率的视觉感应,这使其非常适合感知快速视觉效果,而不会遭受运动模糊的困扰。机器人技术和基于视觉的导航中的某些应用需要3D感知在静态相机前进行圆形或旋转的物体,例如恢复对象的速度和形状。设置等于用轨道摄像头观察静态对象。在本文中,我们提出了基于事件的结构 - 轨道(ESFO),其目的是同时重建从静态事件摄像头观察到的快速旋转对象的3D结构,并恢复相机的等效轨道运动。我们的贡献是三重的:由于最新的事件特征跟踪器无法处理由于旋转运动而导致的定期自我遮挡,因此我们根据时空聚类和数据关联开发了一种新颖的事件特征跟踪器,可以更好地跟踪事件数据中有效特征的螺旋螺旋传播。然后将特征轨道馈送到我们的新颖因素基于图形的结构后端端,该结构从后端进行计算轨道运动插曲(例如自旋速率,相对旋转轴),从而最大程度地减少了重新投影误差。进行评估,我们在旋转运动下生成了一个新事件数据集。比较与地面真理表示ESFO的功效。
基于事件的传感是一种相对较新的成像模态,可实现低潜伏期,低功率,高时间分解和高动态范围采集。这些支持使其成为边缘应用和在高动态范围环境中的高度可取的传感器。截至今天,大多数基于事件的传感器都是单色的(灰度),在单个通道中捕获了Visi-ble上广泛光谱范围的光。在本文中,我们介绍了穆斯特朗事件并研究了它们的优势。尤其是我们在可见范围内和近红外范围内考虑多个频段,并探索与单色事件和用于面部检测任务的传统多光谱成像相比的潜力。我们进一步发布了第一个大型双峰面检测数据集,其中包含RGB视频及其模拟色彩事件,N-Mobiface和N-Youtubefaces,以及带有多光谱视频和事件的较小数据集,N-SpectralFace。与常规多频谱图像的早期融合相比,多阶段事件的早期融合可显着改善面部检测性能。此结果表明,相对于灰度等效物,多光谱事件比传统的多光谱图像具有相对有用的有关场景的信息。据我们所知,我们提出的方法是关于多光谱事件的首次探索性研究,特别是包括近红外数据。
卫星-Sat-Mar 23 9:15-10:15am通过自主动机和短暂的关系意识赋予夫妻关系健康和宽恕,这是一种新的夫妇干预工具 - 一项试点研究
课程编号是三位数,第一位数字代表通常提供该课程的学年,即对于为期四年的 B. Tech. 课程,课程编号为 1、2、3 或 4。在另外两位数字中,最后一位数字表示该课程通常是在奇数(奇数)、偶数(偶数)还是两个学期(零)都提供。中间的数字可以是任意数字。ECL 201 是 EC 部门在第三学期提供的实验课程,MAT 101 是在第一学期提供的数学课程,EET 344 是第六学期提供的电气工程课程,PHT 110 是第一和第二学期都提供的物理课程,EST 102 是由一个或多个部门提供的基础工程课程。这些课程编号将在课程和教学大纲中给出。
● 优先考虑具有工作/实习经验者 ● 具有出色的项目和细节管理能力,并具有活动管理经验 ● 具有团队精神,能够独立和协作地开展工作 ● 良好的书面和口头沟通能力 ● 能够以干净、准确和详细的方式输入数据 ● 能够灵活地快速有效地管理不断变化的优先事项 ● 熟练使用 Microsoft Office Suite 和 Google Drive ● 具有使用 Canva(能够使用共享模板)或其他设计软件的经验者优先考虑 ● 具有 Salesforce 或一般 CRM 经验者优先考虑 ● Asana 项目软件经验者优先考虑 ● 具有营销或技术背景者优先考虑 ● 在 MA 地区的经验、联系和知识者优先考虑