摘要 - 动态场景中的移动对象细分(MOS)是一个重要的,具有挑战性但探索不足的重新搜索主题,以供自动驾驶,尤其是对于从移动的自我车辆获得的序列而言。大多数分割方法利用了从光流图获得的运动提示。但是,由于这些方法通常是基于从连续的RGB框架中预先计算的光流,因此这忽略了对间框架内发生的事件的时间考虑,因此限制了其识别其表现出相对静态性但在运动中确实在运动中表现出相对静态物体的能力。为了解决这些局限性,我们建议利用事件摄像机以更好地理解视频,从而在不依赖光流的情况下提供了丰富的运动提示。为了培养该领域的研究,我们首先引入了一个名为DSEC-MOS的新型大型数据集,用于从移动自我车辆中移动对象进行分割,这是同类的第一个。为了进行基准测试,我们选择了各种主流方法,并在我们的数据集上严格评估它们。随后,我们设计了一种能够利用事件数据的新型网络。为此,我们将事件的临时事件与空间语义图融合在一起,以区分真正的移动对象和静态背景,并围绕着我们感兴趣的对象增加了另一个密集的监督。我们提出的网络仅依靠用于培训的事件数据,但在推理过程中不需要事件输入,从而使其直接与仅限框架方法相媲美,并且在许多应用程序情况下都可以使用更广泛的使用。源代码和数据集可公开可用:https://github.com/zzy-zhou/dsec-mos。详尽的比较突出了我们方法对所有其他方法的显着性能提高。
里奥格兰德州的东北地区,托拉曼达河(SRT)的河流盆地,在塞拉·杰拉尔(Serra Geral)和广泛的沿海平原上脱颖而出。该地区淡水鱼的多样性超过了23个家庭中分布的100种。UFRGS鱼类学实验室研究小组已经研究了这些物种的分类学和生物学的几个方面,其中包括一个“ DNA条形码”项目,该项目旨在建立线粒体石质C氧化酶(IOC)(IOC)(IOC)(IOC)SRT库。DNA条形码是一种在科学中广泛使用的工具,用于根据从人群中个体的组织样本获得的遗传序列区分物种。这项研究的目标包括对“ DNA条形码”项目中使用的证明标本的摄影目录的审查和阐述,包括生命中的鱼类图像并保存在酒精中。该方法包括搜索乌尔夫犬动物学系的鱼类收藏中包含证词标本的地段和路易斯·罗伯托·马拉巴巴教授的个人摄影档案。311批次和574个标本保存在代表与“ DNA条形码”项目有关的98种物种中。从此列表中,旨在拍摄每种至少三个代金券的背面,外侧和腹侧视图的标准化照片。在生命中寻找凭证的照片处于早期阶段,但是已经找到了26个摄影记录,后来将与项目物种相关联并编辑以包含在目录中。
取消以书面形式(通过电子邮件,传真或标准邮件)进行。注册您接受常规→条款和条件。所有参与者将在注册截止日期后获得电子确认。该发票将在活动结束后发行,并通过标准邮件发送。
目的:本研究旨在通过使用美国FDA不良事件报告系统(FAERS)的数据进行药物守护性分析来研究非选择性RET激酶抑制剂与甲状腺功能障碍(TD)之间的潜在关联。方法:从FAERS数据库中获得非选择性RET MKI的数据,跨越2015年第一季度到2023年第四季度。不成比例分析用于量化与非选择性RET MKI相关的AE信号并识别TD AE。亚组分析和多元逻辑回归用于评估影响TD AES发生的因素。时间发作(TTO)分析和Weibull形状参数(WSP)测试。结果:描述性分析表明,与非选择性RET MKI相关的TD不良事件的趋势越来越大,报告的严重反应很明显。使用ROR,PRR,BCPNN和EBGM算法的不成比例分析始终显示出Sunitinib,Cabozantinib和Lenvatinib与TD不良事件之间的正相关。亚组分析基于年龄,性别和体重强调了对TD的差异敏感性,每个抑制剂都观察到了不同的模式。逻辑回归分析确定了独立影响TD不良事件发生的因素,强调了年龄,性别和体重在患者分层中的重要性。发出的时间分析表明用非选择性RET MKI治疗后TD不良事件的早期表现,随着时间的推移风险降低。结论:我们研究的结果表明使用非选择性RET MKI与TD AE的发生之间存在相关性。这可以为非选择性RET MKI的临床监测和风险识别提供支持。然而,需要进一步的临床研究来证实这项研究的结果。关键字:药物诱导的甲状腺功能障碍,非选择性RET MKIS,药物守流,FDA不良事件报告系统,临床监测
各种技术产品和服务的快速普及改变了人类生活的许多领域,包括体育产业。在本章中,我们讨论了体育领域不同利益相关者的技术转型过程,以及特定创新在这一持续现象中的作用。它扩展了体育管理与技术交叉领域的文献,随后提供了该领域生动的前沿案例。更详细地,我们解释了新技术创新如何以及为何传播和使用,从而影响体育训练、表现、评判和观看。因此,它重塑了赛事和体育管理的工具和策略,一方面带来了不确定性和模糊性,另一方面也为所有利益相关者带来了新的营销和管理机会。然而,要利用这些机会并将其转化为优势,体育管理专业人士必须深刻理解当前以技术为中心的行业转型的性质、轨迹和影响。在本章中,我们定义并描述了所有这些结构,深入解释了技术在体育赛事和整个体育生态系统中的变革作用。本书面向广泛的读者群:学生、学者、体育界和技术专业人士。此外,我们还确定了未来研究的前景方向和议程。
随着晶体管特征大小的降低,对能量颗粒的敏感性会增加[1-3]。由于电子系统在恶劣的环境中的广泛使用,对辐射效应的缓解技术已在文献中得到了大量研究[4-7]。可以从制造过程修改到不同设计实现的辐射硬化策略。修改掺杂曲线,对沉积过程的优化和使用不同材料的使用是按过程(RHBP)技术众所周知的辐射硬化的示例。但是,除了其较高的成本外,RHBP通常是最先进的CMOS流程后面几代人,导致低级性能。另一方面,通过设计(RHBD)进行辐射硬化可有效提供对辐射效应的硬度[7]。这些技术可以从电路布局到系统设计的不同级别的抽象级别实现。单事件效应(SEE)的产生机制与综合电路(ICS)的物理布局密切相关,例如,在晶体管的P-N连接中,能量沉积和电荷收集之间的关系。因此,可以在电路布局级别上应用几种硬化方法,例如封闭的布局晶体管(ELT),防护环,虚拟晶体管/门或双互锁存储单元(DICE)[6-9]。
1 CNRM,de toulouseUniversitéde toulouse,Météo -France,CNRS,Toulouse,法国,2 Laboratoire Alterato Milieux Milieux观察时代人/Institut Pierre Simon Laplace(IPSL) (DWD),德国奥登巴赫,4大气与气候科学研究所,苏黎世,苏黎世,瑞士,瑞士5 Wyss自然学院,伯恩大学,伯恩大学,瑞士6气候与环境物理,物理学,物理学,物理学研究所,伯恩,伯恩,伯恩,伯恩,伯尔尼,贝尔特,贝尔特,贝尔特,贝尔特,贝尔尼挪威奥斯陆气象学院,9卡尔斯鲁希技术研究所(KIT),德国卡尔斯鲁希,德国10个气候服务中心(Gerics),Helmholtz -Zentrum thermholtrum thermhore gmbh,德国汉堡,德国,11个研究所,乔格尔(Josci),乔格(Ibgg -3)德国,英国埃克塞特市大都会办公室12号办公室,德国勃兰登堡技术大学大气进程主席13,德国科特布斯,德国科特布斯,荷兰皇家气象研究所(KNMI)14号,荷兰,荷兰15 Fondazione Centro -Meditertro -Mediterraneo suiiii camcaty climcicali climccy climccy climccy climccy, Abdus Salam国际理论物理中心(ICTP),意大利Trieste,17 Faculdade deCiências,Instituto dom Luiz Instituto dom Luiz,Lisboa大学,里斯本,里斯本,葡萄牙,CESR 18 CESR(环境系统研究中心)
展望未来,Kudan将继续与Fox Sports合作探索下一代AR技术的进一步应用,旨在推动创新并提供更加沉浸式和更具吸引力的广播体验。关于Kudan Inc. Kudan是一家深入的技术研发公司,专门从事人工感知算法(AP)。作为对人工智能(AI)的补充,AP功能允许机器发展自主权。目前,Kudan正在为下一代解决方案领域(例如数字双胞胎,机器人技术和自动驾驶)许可其技术。有关更多信息,请访问Kudan的网站https://www.kudan.io/。■公司详细信息名称:Kudan Inc.证券法规:4425(TSE增长)代表:CEO DAUU KO■联系信息有关更多详细信息,请从此处与我们联系。
尽管对增强自动驾驶汽车的感知系统的兴趣越来越大,但事件摄像机和激光镜头之间的在线量化是在捕获全面的环境信息方面的两个传感器,但无法探索全面的环境信息。我们介绍了Muli-ev,这是第一个针对用LIDAR对事件摄像机进行型校准的基于深度学习的框架。此范围对LIDAR和事件摄像机的无缝集成至关重要,从而实现了动态的实时校准调整,这对于保持最佳传感器对齐方式至关重要。对DSEC数据集中介绍的现实世界的严格评估,Muli-ev不仅可以实现校准精度的实质性提高,而且还为在移动平台中的事件摄像机集成了LIDAR。我们的发现揭示了Muli-ev在自主驾驶中增强感知系统的安全性,可靠性和整体性能的潜力,这标志着其现实世界的部署和有效性迈出了重要一步。