除了治理方面的变革之外,政府还希望,巴黎综合理工学院能够根据多份报告以及巴黎综合理工学院国际科学理事会的建议,全权承担目前分布在其所有机构的研究职能。该研究所的研究和创新确实必须受益于行政和组织简化,以尽可能地为其国际影响力和国民经济做出贡献,特别是通过积极参与绿色再工业化项目和加强我们的工业和数字主权。
近年来,人们对用量子力学语言来制定决策理论的可能性产生了浓厚的兴趣。在书籍 [ 1 – 4 ] 和评论文章 [ 5 – 8 ] 中可以找到大量关于此主题的参考资料。这种兴趣源于经典决策理论 [ 9 ] 无法遵循真实决策者的行为,因此需要开发其他方法。借助量子理论技术,人们有望更好地表征行为决策。有多种使用量子力学来解释意识效应的变体。本评论的目的不是描述现有的变体,因为这需要太多篇幅,可以在引用的文献 [ 1 – 8 ] 中找到,而是对作者及其同事提出的方法进行概述。这种方法被称为 [ 10 ] 量子决策理论 (QDT)。在本综述中,我们仅限于考虑量子决策理论,而不会涉及量子技术其他应用趋势,例如物理学、化学、生物学、经济学和金融学中的量子方法、量子信息处理、量子计算和量子博弈。显然,一篇综述无法合理地描述所有这些领域。尽管量子博弈论与决策理论有相似之处,但量子博弈的标准处理[11-15]与本综述中提出的量子决策理论的主要思想之间存在重要区别。在量子博弈论中,人们通常假设玩家是遵循量子规则的量子设备[16,17]。然而,在量子决策理论[10]的方法中,决策者不一定是量子设备,他们可以是真实的人。QDT 的数学类似于量子测量理论中的数学,其中观察者是经典人类,而观察到的过程则以量子定律为特征。在 QDT 中,量子理论是一种用于描述决策过程的技术语言。量子技术被证明是一种非常方便的工具,可以描述现实的人类决策过程,包括
经过 2020 年 12 月开始的多年过程和两轮广泛的公众咨询后,B 公司认证标准的演变过程已进入后期阶段。金融服务业是一个独特而多样化的行业,它拥有独特的商业模式和方法来管理其对社会和地球的(潜在)环境和社会影响。在制定新标准的过程中,我们认识到需要为金融服务业制定量身定制的标准。最初的轨迹是在制定 B 公司的新标准之后或同时制定金融行业的独特标准。因此,目前针对 B 公司的现行标准草案并未充分考虑到该行业的细微差别,可能并不全面适用于金融服务业。
银行面临的主要挑战之一是数据的管理和存储,尤其是从非结构化历史数据转变为促进机器学习分析的格式。自动化已成为必不可少的工具,不仅用于常规报告,而且用于衡量风险。但是,自动化的有效性通常受到弱数据治理框架的阻碍。此外,尽管中央银行对加密货币保持谨慎和怀疑,但银行越来越多地利用分析和机器学习来改善信用风险预测和管理,同时还解决了网络和数字风险。
13.摘要(最多 100 个字)本研究分析了美国陆军人工智能和专家计算机系统的发展,以及陆军在这些技术的未来发展中可能发挥的作用。本研究调查了陆军对这些计算机系统的开发和使用情况。它评估了陆军是否应该在这些系统的开发中发挥领导者或角色。陆军在这些技术上的领导或跟随决定将对未来规模较小、资源较少的部队的有限资源产生重大影响。鉴于财政资源和人员减少的趋势,本研究将研究这些问题。对民用部门对这些系统的开发和使用情况进行了评估,以确定陆军通过使用这些系统获得的收益。这些系统对陆军各种要求的适应性进行了评估,并评估了系统的近期和远期成本
参考文献 [1] Litjens, G., Et Al. (2017)。“医学图像分析中的深度学习调查。”医学图像分析,42,60-88。 [2] Esteva, A., Et Al. (2021)。“深度学习支持的医学计算机视觉。”自然生物医学工程,5(6),541-551。 [3] Haidegger, T. (2021)。“人工智能驱动的机器人手术:趋势、进步和挑战。”IEEE 生物医学工程评论,14,27-45。 [4] Ferguson, S., Et Al. (2019)。“用于预测神经外科术后并发症的机器学习模型。”神经外科评论,43(4),891-900。 [5] Bricault, I., Et Al. (2021)。 “人工智能驱动的机器人神经外科手术:技术和临床结果。”《神经外科杂志》,135(2),543-553。[6] Shen, D. 等人(2019 年)。“医疗保健中的人工智能:个性化和精准医疗。”《自然医学》,25(1),44-56。[7] Senders, JT 等人(2018 年)。“神经外科中的机器学习:一项全球调查。”《神经外科评论》,41(3),585-594。[8] Senders, JT 等人(2020 年)。“用于神经外科结果预测的人工智能。”《柳叶刀数字健康》,2(7),E352-E361。[9] Topol, EJ(2019 年)。“高性能医疗:人类与人工智能的融合。” Nature Medicine,25(1),44-56。[10] Rudin,C.(2019)。“停止解释高风险决策的黑箱机器学习模型,并使用可解释的
这种二分法的问题和有害性在于,原核生物最初在细胞学上被定义为负面的。换句话说,原核生物缺乏真核细胞的这种或那种特征:甚至油滴或凝聚层都符合这种负面定义。原核生物-真核生物二分法的任何优点在于它有助于理解真核生物,而真核生物可能是通过“原核”阶段进化而来的。随着重复(作为教义问答),原核生物-真核生物二分法只会让微生物学家轻易接受他们对原核生物之间关系几乎一无所知的事实;他们甚至对这一事实——当今最大的挑战之一——感到迟钝,即他们丝毫不了解原核生物和真核生物之间的关系。细菌之间的关系问题归结为“如果它不是真核生物,而是原核生物”,而要了解原核生物,我们只需确定大肠杆菌与真核生物有何不同。这并不是对创造性思维的邀请,也不是统一的生物学原理。这种真核生物-原核生物二分法是原核微生物学与真核微生物学之间的一道障碍。这种对微生物学的短视观点不仅未能认识到微生物关系问题的重要性,而且未能认识到今天难以解决的问题明天可能并非如此。自 20 世纪 50 年代以来,分子序列就被用于确定进化关系,而 Zuckerkandl 和 Pauling 的开创性文章“分子作为进化历史的记录”在 1965 年最令人信服地阐述了这一观点(36)。然而,记录表明,微生物学——最需要的生物科学——实际上对这些方法的意义和潜力视而不见。然而,在 20 世纪 70 年代末,情况发生了巨大变化。rRNA 序列已被证明是原核生物系统发育的关键(例如 8)。尽管原核生物在细胞和生理水平上没有提供可靠的系统发育排序特征,但它们的 rRNA 足以做到这一点。到 20 世纪 80 年代初,随着基于 rRNA 的原核生物系统发育开始出现,微生物学家开始(尽管非常缓慢地)重新意识到了解微生物系统发育的重要性。将所有原核生物视为同一种类的愚蠢做法,在古细菌(最初称为古细菌)的发现中得到了戏剧性的揭示。古细菌是一类完全出乎意料的原核生物,如果真要说有什么不同的话,那就是它与真核生物(真核生物)的关系比与其他原核生物(真正的)细菌(11、13、32、34)的关系更密切。即便如此,真核生物的力量——
近年来在未加强的持续学习方法中取得了重大进展。尽管它们在受控设置中取得了成功,但它们在现实世界中的实用性仍然不确定。在本文中,我们首先从经验上介绍了现有的自我保护的持续学习方法。我们表明,即使有了重播缓冲液,现有的methods也无法保留与时间相关输入的视频的关键知识。我们的见解是,无监督的持续学习的主要挑战源于无法预测的意见,缺乏监督和先验知识。从Hybrid AI中汲取灵感,我们介绍了E Volve,这是一个创新的框架,它是云中的多个预审预周化模型,作为专家,以加强对Lo-cal Clister的现有自我监督的学习方法。e Volve通过新颖的专家聚合损失来利用专家指导,并从云中返回并返回。它还根据专家的信心和量身定制的先验知识将权重动态分配给专家,从而为新流数据提供自适应监督。我们在几个具有时间相关的实地世界数据流中广泛验证了E volve。结果令人信服地表明,E Volve超过了最佳的无监督持续学习方法,在跨Var-IOS数据流的Top-1线性评估准确性中,volve持续了6.1-53.7%,从而确认了多样化的专家指南的功效。代码库位于https://github.com/ orienfish/evolve。
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
