自从大约 10 亿年前单细胞祖先出现以来,后生动物目前的多样性是通过漫长的进化过程实现的。这一进化过程产生了大约 35-37 个现存动物门,除脊椎动物亚门外,这些门均由无脊椎动物组成。目前,已描述的现存后生动物种类约为 1,162,000 种,其中只有约 50,000 种是脊椎动物(约 5%)。此外,无脊椎动物能够适应所有类型的生态系统,包括水生和陆地生态系统,因此研究无脊椎动物的多样性和进化对于了解现存动物生物学至关重要。总结无脊椎动物或基于无脊椎动物的研究历史会过于广泛。然而,值得注意的是,自诺贝尔奖创立以来,它曾多次授予使用无脊椎动物模型的研究人员。一些例子包括使用果蝇作为模型的研究(例如,染色体在遗传中的作用、昼夜节律、先天免疫机制、嗅觉受体、早期胚胎发育的遗传控制)、秀丽隐杆线虫(程序性细胞死亡的机制、RNA 干扰)、海胆(细胞周期的关键调节器)、海蛞蝓(神经系统中的信号转导)、蜜蜂(社会和行为模式的组织)、螃蟹(生理和化学视觉过程)、章鱼(涉及神经细胞膜周围和中心部分的兴奋和抑制的离子机制)或水母(用于发现和开发绿色荧光蛋白 GFP)。除了基于无脊椎动物模型的研究有着悠久的历史之外,我们现在生活在一个特殊的时代,主要有两个原因:首先,自从第一个无脊椎动物的完整基因组被测序(2000 年秀丽隐杆线虫的基因组)以来,我们现在可以获得大约 1000 个无脊椎动物物种的完整基因组序列(存放在 NCBI 数据库中);其次,由于 CRISPR/Cas9 或 TALEN 等简单基因组改造技术的发展,我们可以进行一系列功能实验,这在几年前是不可想象的。考虑到所有这些,我们很高兴在这本题为“无脊椎动物的进化”的卷中介绍关于不同无脊椎动物谱系的新颖而有趣的研究,重点关注其生物学的几个方面。本卷包含八篇原创研究文章和三篇评论,它们的重点、想法和假设反映了使用无脊椎动物作为模型生物的研究的当前多样性和未来方向。本书显然无意成为无脊椎动物研究的详尽集合,但我们希望这里介绍的文章集合能够让您对无脊椎后生动物研究的类型和所用动物模型的多样性有一个总体了解。因此,我们可以阅读使用鹿角珊瑚 [ 1 ] 开展的研究,使用几种软体动物开展的研究,例如头足类 Nautilus pompilius [ 2 ]、腹足类 Crepidula fornicata [ 3 ] 或双壳类 Mytilus galloprovincialis [ 4 ],以及使用涡虫 Schmidtea mediterranea [ 5 ] 开展的研究,或者使用几种脊索动物开展的研究,例如两种头索动物(Branchiostoma lanceolatum [ 6 ] 和 Branchiostoma floridae [ 7 ])和两种尾索动物(Ciona robusta [ 8 ] 和 Phallusia mammillata [ 4 ])。如今,从非经典动物模型中获取转录组和基因组数据更加容易,使得基因家族进化的研究更加全面。因此,
Paul Cottu、Bruno Coudert、David Perol、Anne Doly、Julien Manson 等人。接受人类表皮生长因子受体 2 靶向治疗的 20,000 多名乳腺癌女性在现实世界中的治疗策略演变:来自法国个性化报销模型数据库的结果(2011-2018 年)。《欧洲癌症杂志》,2020 年,141,第 209-217 页。�10.1016/j.ejca.2020.10.012�。�hal-03493774�
抗生素耐药性的进化是一场世界性的健康危机,其根源是新突变。减缓突变的药物可以作为联合疗法延长抗生素的保质期,但减缓进化的药物和药物靶点尚未得到充分探索,而且效果不佳。在这里,我们使用基于网络的策略来识别阻断氟喹诺酮类抗生素诱发突变中心的药物。我们确定了一种经美国食品药品监督管理局和欧洲药品管理局批准的药物,地喹氯铵 (DEQ),它可以抑制大肠杆菌一般应激反应的激活,从而促进环丙沙星诱导的(应激诱导的)诱变 DNA 断裂修复。我们发现了抑制途径中的步骤:激活上游“严格”饥饿应激反应,并发现 DEQ 会减缓进化,而不会有利于 DEQ 抗性突变体的增殖。此外,我们展示了小鼠感染期间的应激诱导突变以及 DEQ 对其的抑制。我们的工作为减缓细菌和一般进化的药物提供了一种概念验证策略。
ppo [6],[48],[76],[88],[98],[114],[153],[167],[203],[208],[208],[308,309],[338],[338],[342] trpo [342] trpo [43],[43],[312],[312] 2其他[6],[30],[30],[30],[30],[60],[60],[60],[60],[60],[60] 171],[196],[218],[260],[288],[342] 12基于模型的其他[340],[131],[327] 3表1。基于RL方法和算法对每个出版物进行分类。
技术的日益影响正在将业务流程与经典含义区分开来。在这项研究中,基于世界上的业务流程现在包括波动性,不确定性,复杂性,歧义(VUCA)等组成部分,在不同因素的影响下,在VUCA作为流程过程的概念下,讨论了供应链中的新方法。影响世界的不同重要发展,例如政治发展,数字化转型,流行病和自然灾害,使经典供应链功能障碍。对文献的回顾表明,在VUCA时代,精益,敏捷,灵活和绿色(Larg)的供应链和数字供应链的历史发展并未相互解决。在当今有关供应链的研究中,缺乏对供应链新组成部分的知识导致在经典链中的理解中进行研究,这阻止了反映现实世界的应用。在这方面,在研究范围内,揭示了供应链管理,工业革命及其相互作用的历史发展。因此,它将有助于新的研究,以了解从过去到现在的供应链管理的发展,并专注于正确的问题。已经保留了历史完整性,并通过审查有关供应链管理和工业革命的文献获得了发展,并且这些发展彼此相关,并且在表中介绍了历史发展过程。此外,所有概念都在文献的支持下进行解释,并且每个发展均以这个方向为阶段的时间流表示。已经确定,文献中这种进化发展缺乏理论解释。本文中提供的信息揭示了整个供应链管理的发展,并将有助于发展专业观点。
摘要:最近关于混合量子-经典机器学习系统的研究已证明,利用参数化量子电路 (PQC) 解决具有挑战性的强化学习 (RL) 任务是成功的,并且与经典系统(例如深度神经网络)相比具有可证明的学习优势。虽然现有研究展示并利用了基于 PQC 的模型的优势,但 PQC 架构的设计选择以及不同量子电路在学习任务中的相互作用通常尚未得到充分探索。在这项工作中,我们引入了一种用于参数化量子电路 (MEAS-PQC) 的多目标进化架构搜索框架,该框架使用具有量子特定配置的多目标遗传算法来高效搜索最佳 PQC 架构。实验结果表明,我们的方法可以找到在三个基准 RL 任务上具有出色学习性能的架构,并且还针对其他目标进行了优化,包括减少量子噪声和模型大小。进一步分析量子操作的模式和概率分布有助于确定混合量子-经典学习系统的性能关键设计选择。
为了了解每种野生型氨基酸对不同侧链性质的可及性,我们将所有 20 种氨基酸分为 8 类:非极性(NP、M、I、L、V、A)、极性不带电(PU、S、T、Q、N)、带正电荷(PC、R、K、L)、带负电荷(NC、D、E)、芳香族(Ar、F、T、Y)和三个特殊基团 P、C、G,由于其性质不同,每个基团仅由一个氨基酸组成。通过易错 PCR,每种野生型氨基酸都有一些不可接近的性质类别,如图 4c 所示。此外,在