经济理论是研究经济如何运作的学科。演化经济学广泛关注经济变化如何发生,并专注于创新和创业、产业和制度动态(而不是利润),以及与经济增长和发展相关的模式和趋势(Hodgson,2019 年)。演化经济学思想的基础是创新和经济变化是相互交织的(Ayres,2000 年;Ayres,1953 年)。采用演化经济方法的理论家通常关注经济增长、生产力和利益相关者的互动。采用演化经济学原理的规划者关注基础设施、结构和制度的变化及其随时间的影响。另一方面,大多数管理技术开发的实践者关注创新过程和创新和技术变革系统,因为它们可能会对经济发展产生影响(Nelson,2008 年;Schot & Steinmueller,2018 年)。演化经济学的核心概念是世界是复杂而动态的。因此,梅特卡夫(1998:第 8 页)宣称:“创新驱动的经济过程是开放式的,经济永远不会处于均衡状态,甚至不会接近均衡状态……结果是被发现的,而不是在事件发生之前就被假定的”。因此,演化经济学被认为是非定向的,缺乏对给定终点的预先确定(即,它不是目的论的)。由于创新(即技术变革)被视为一种
在过去十年中,可解释人工智能 (XAI) 引起了研究界的极大兴趣,其动机是关键 AI 应用中需要解释。XAI 的一些最新进展基于进化计算 (EC) 技术,例如遗传编程。我们将这种趋势称为 XAI 中的 EC。我们认为 EC 方法的全部潜力尚未在 XAI 中得到充分发挥,并呼吁社区在这一领域做出未来的努力。同样,我们发现 EC 中对基于种群的方法的解释,即它们的搜索过程和结果的关注度日益增加。虽然已经朝这个方向做了一些尝试(尽管在大多数情况下,这些尝试并没有明确地放在 XAI 的背景下),但我们相信仍有几个研究机会和开放的研究问题,原则上可以促进 EC 在现实世界应用中更安全、更广泛地采用。我们将这种趋势称为 EC 中的 XAI。在这篇立场文件中,我们简要概述了上述两种趋势的主要结果,并提出 EC 社区可能在实现 XAI 方面发挥重要作用。
2024春季EEB 172/C202:高级统计秋季2023小儿R25讲师:“健康与疾病中的微生物组的分析”秋季2023年秋季来宾讲师EEB 200秋季EEB 20023 EEB 2023 EEB 201:R Bootcamp winter 2023 EEB冬季2023 EEB 172/C202:Advancity Statistical fall 202 Eeeb 292 eeeb 29:EEB 297:EEB 297:EEB 297:EEB 297:EEB 297:EEB 297:EEB 297:EEB 297:EEB 297:EEB 29777777. EEB 172/c202: Advanced Statistics Fall 2021 EEB 297: Microbiome Evolutionary Genomics Spring 2021 EEB 149: Evolutionary Genomics Winter 2021 EEB 172/c202: Advanced Statistics Fall 2020 EEB 297: Population Genomics Simulations with SLiM Spring 2020 C234: Ethics and Accountability in Biomedical Research Spring 2020 CM222:生物信息传闻学中的算法2020年冬季EEB 172/C202:高级统计量秋季秋季EEB 297:细菌的重组毕业生研讨会2020年2月250年2月EEB 250的客座讲师250:第一年研究生的工具生物学本科研讨会。2019年5月,加州大学洛杉矶分校的人口遗传学本科课程的客座讲师2019年1月在UCLA 2016年秋季访客本科课程概论,2016年秋季访客生物学计算机讲师,旧金山州立大学旧金山州立大学,2012-2014 2014-2014 Splash! (斯坦福大学教育研究计划)关于高中生入学人群遗传学的课程。 2013年秋季在斯坦福大学新生本科生生物探索课程2012年春季,2012年春季,斯坦福大学博士学位基因组学业和系服务:2019年5月,加州大学洛杉矶分校的人口遗传学本科课程的客座讲师2019年1月在UCLA 2016年秋季访客本科课程概论,2016年秋季访客生物学计算机讲师,旧金山州立大学旧金山州立大学,2012-2014 2014-2014 Splash!(斯坦福大学教育研究计划)关于高中生入学人群遗传学的课程。2013年秋季在斯坦福大学新生本科生生物探索课程2012年春季,2012年春季,斯坦福大学博士学位基因组学业和系服务:
应对抗生素耐药性造成的挑战需要了解其进化背后的机制。与任何进化过程一样,抗菌耐药性(AMR)的进化是由细菌种群中的基本变化和作用于其作用的选择性压力所驱动的。重要的是,选择和变异都取决于考虑抗性演化的规模(从单个患者内的进化到宿主人群水平)。实验室实验已经对抗生素耐药性演化的机制产生了基本见解,但现在整个基因组测序的技术进步如今,现在可以探测实验室以外的抗生素耐药性演变,并直接记录了单个患者和宿主群体和宿主种群。在这里,我们回顾了在每个量表中驱动抗生素耐药性的进化力,在我们当前对AMR进化的理解中的高光差距,并讨论了进化引导的干预措施的未来步骤。
摘要 针对细菌核糖体的药物在现代医学和兽医实践中被广泛用于治疗细菌感染和防止抗生素耐药性的传播。然而,大多数针对核糖体的药物研究仅限于少数模型生物。因此,我们不知道在模型细菌中观察到的核糖体药物结合位点是否像目前所暗示的那样在细菌中高度保守。在本研究中,我们使用一个简单但强大的计算流程来解决这个问题,该流程过滤掉罕见的变异和测序错误,以识别整个细菌生命树中核糖体药物结合位点的保守变化。这使我们能够评估来自 8,809 种细菌物种的 82 个细菌核糖体药物结合残基的保守性。对于这些残基中的每一个,我们追踪其在 40 多亿年的细菌历史中的进化。与核糖体药物结合残基高度保守的普遍看法相反,我们发现细菌门类在药物结合位点存在广泛的差异。此外,我们还发现,大约 10% 的细菌物种带有核糖体 RNA (rRNA) 替换,而这种替换此前仅在耐药细菌的临床分离株中观察到。总体而言,我们的工作表明,我们传统上将核糖体分为细菌和真核生物类型的方法过于简单且具有误导性,因为它忽略了广泛的谱系特异性变异,这些变异使得某些细菌的药物结合位点与大肠杆菌的差异比大肠杆菌与人类的差异更大。这些发现将对核糖体靶向抗生素的谱系特异性使用产生许多影响,这些抗生素目前被视为细菌蛋白质合成的通用抑制剂。
2021-至今的乔纳森·马(Jonathan Mah)(博士学位,生物信息学学生;与南迪塔·加鲁德(Nandita Garud)的联合)2023-冠军Swetha Ramesh(博士生,生物信息学)2023-PRESENT AINA MARTINEZ ZURITA(aina Martinez Zurita)生物信息学;目前是墨西哥国家自治大学的副教授,2015 - 2018年Tanya Phung(博士生,生物信息学);目前是Ambry Genetics 2013 - 2018年Bernard Kim(生态学和进化生物学博士学位)的生物信息学科学家;普林斯顿大学的即将到来的助理教授。2015-2020 Annabel Beichman(博士生,生态学和进化生物学;与鲍勃·韦恩(Bob Wayne)联合);目前,与凯利·哈里斯(Kelley Harris)一起在华盛顿大学的凯利·哈里斯(Kelley Harris)2016-2020贾兹林·穆尼(Jazlyn Mooney)(遗传学和基因组学博士学位); USC 2017-2021 Arun Durvasula(遗传学和基因组学博士学位;与Sriram Sankararaman联合)的助理教授; USC 2021-2022 Meixi Lin的助理教授(生态学和进化生物学博士学位;与Bob Wayne联合);目前,在UC Berkeley 2018-2022 Chris Kyriazis的Moisés(MOI)Expósito-Alonso的博士后(MOI)Expósito-Alonso(博士生,生态学和进化生物学博士学位;与Bob Wayne联合);目前,圣地亚哥动物园野生动物联盟2017 - 2023年杰西·加西亚(Jesse Garcia)(MS Student,BioInformatics)是一名博士后研究助理;目前,Fulgent Genetics 2020-2023 Christina del Carpio(博士生,生态学和进化生物学)的生物信息学软件开发人员;目前,加州无家可归者间机构委员会的研究数据分析师2021-2023 Stella Yuan(生态与进化生物学;与Bob Wayne联合)
由于存在较长的 poly-A/T 均聚物片段,这会妨碍测序和组装,因此对海鞘 Oikopleura dioica 的线粒体基因组进行测序是一项艰巨的任务。本文,我们报告了通过将 Illumina 和 MinIon Oxford Nanopore Technologies 获得的多个 DNA 和扩增子读数与公共 RNA 序列相结合,对 O. dioica 的大部分线粒体基因组进行测序和注释。我们记录了大量 RNA 编辑,因为线粒体 DNA 中存在的所有均聚物片段都对应于线粒体 RNA 中的 6U 区域。在 13 个典型的蛋白质编码基因中,我们能够检测到 8 个,外加一个未分配的开放阅读框,该阅读框与典型的线粒体蛋白质编码基因缺乏序列相似性。我们发现 nad3 基因已转移到细胞核中并获得了线粒体靶向信号。除了两个非常短的 rRNA 外,我们只能识别出一个 tRNA(tRNA-Met),这表明 tRNA 基因丢失多次,而核基因组中线粒体氨酰-tRNA 合成酶的丢失也支持了这一观点。基于已识别的八个典型蛋白质编码基因,我们重建了最大似然和贝叶斯系统发育树,并推断出该线粒体基因组的极端进化率。然而,附肢动物在被囊动物中的系统发育位置无法准确确定。
螯肢动物门是一类古老、生物多样性丰富且生态意义重大的节肢动物。过去十年,螯肢动物进化研究经历了一次复兴,使我们对高级系统发育和生物目内部关系的理解发生了重大变化。这些概念上的进步包括在螯肢动物目子集中发现多个全基因组复制事件,例如马蹄蟹、蜘蛛和蝎子。因此,螯肢动物进化的长期假设和教科书场景,例如蛛形纲的单系性和蛛形纲共同祖先的一次陆地殖民,引起了争议。该谱系中古老的重复基因的保留也为研究基因复制在螯肢动物宏观进化中的作用提供了沃土。这一新的研究前沿与第一种针对蛛形纲动物模型的基因编辑协议的及时建立相同步,促进了新一代实验方法的出现。
助理教授ISTEC-LISBON高级高级技术研究所,葡萄牙摘要:自人类的开始以来,人类试图相互交流,但是只要有交流,就会有干扰。因此,为防止在重要的通信中发生干扰,创建了密码学和隐肌。加密将当前文本转换为不可感知的文本,而隐肌掩盖了信息,以使其不可感知。这些技术已经有了数千年的历史,部分遵循不同的道路,毫无疑问,加密术是几个世纪以来最突出的技术,因为它一直是军事领导人和统治者的服务。毫无疑问,最受欢迎的是一个叫做凯撒密码的人,因为罗马皇帝朱利叶斯·凯撒(Julius Caesar)在公元前4世纪左右使用。鉴于其简单性和多功能性,引起了其他一些,例如:Vigenere,Beaufort,Gronsfeld等。在本文中,我们将研究Cesar密码与:Vigenere,Beaufort和Gronsfeld的进化关系。索引术语 - ryptography,替代密码,单个字样,多符号,凯撒密码,vigenèrecipher,beaufort密码和gronsfeld密码。