马拉维湖丽鱼科鱼类以相对较少的遗传变化形式表现出广泛的形式和功能。我们比较了岩石和沙子栖息的物种的基因组,并询问两组之间哪些遗传变异差异。我们发现,有96%的分化变体位于非编码序列中,但是这些非编码差异变体在进化上是保守的。分化变体附近的基因组区域富含颅面,神经和行为类别。在基因组序列的导线之后,我们使用岩石与沙子及其杂种来描述BMP信号传导和IRX1B在胃肠局部领土的规范中,在成人社会行为过程中揭示了上下文依赖于上下文的大脑基因表达。我们的结果证明了不同的基因组序列如何预测关键进化特征的差异。我们强调了进化反向遗传学的希望 - 表型差异与无偏基因组测序的推论,然后在自然种群中进行经验验证。
元学习算法可以了解学习过程本身,因此它可以用更少的数据和迭代次数加速后续类似的学习任务。如果能够实现,这些好处将把传统机器学习的灵活性扩展到时间窗口或数据可用的领域。股票交易就是这样一个领域,随着时间的推移,数据的相关性会降低,需要在更少的数据点上快速获得结果以应对快速变化的市场趋势。据我们所知,我们是第一个将元学习算法应用于股票交易的进化策略的人,通过使用更少的迭代次数来减少学习时间,并用更少的数据点获得更高的交易利润。我们发现,我们的股票交易元学习方法获得的利润与纯进化算法相似。但是,它在测试期间只需要 50 次迭代,而没有元学习通常需要数千次,或者在测试期间需要 50% 的训练数据。
Emily H Emmott,UCL人类学,伦敦大学学院,伦敦塔维顿街14号,英国,WC1H 0BW,emily.emmott@ucl.ac.ac.uk
伦敦大学学院,英国伦敦大学学院#应致辞:nbirkbak@clin.au.dk或nicolas.mcgranahan.10@ucl.ac.uk摘要转移性癌症是死亡的主要原因,并且在很大程度上仍然是不可能的。 因此,迫切需要更好地了解转移,以改善晚期疾病的预后。 在这里,我们调查了探索转移性癌基因组学的研究的景观。 我们考虑了转移基因组驱动因素的证据,并探索了研究转移扩散模式的研究。 引言转移涉及癌细胞从原发性肿瘤到体内远处的器官的分散和随后定植。 每个转移性细胞代表其父母原发性肿瘤的进化分支,共享基因组疤痕和关键驱动因素改变,但必须能够克服转移性级联反应的步骤。 尽管在理解和治疗原发性肿瘤方面取得了显着进展,但与转移性癌症有关的生存仍然很差,其中90%与癌症相关的死亡与转移有关(Lambert等,2017)。 转移代表了进化过程(Turajlic和Swanton,2016年),并以其最基本的形式涉及一个活的癌细胞进入循环,生存并退出血液,并嵌入具有潜在敌对的微环境的偏远组织中,并形成新的转移性肿瘤。 小鼠的实验工作表明,这一过程固有地效率低下。绝大多数癌细胞在循环中灭亡,卡在毛细血管中,或者在退出血液后的24小时内凋亡(Lambert等,2017)。伦敦大学学院,英国伦敦大学学院#应致辞:nbirkbak@clin.au.dk或nicolas.mcgranahan.10@ucl.ac.uk摘要转移性癌症是死亡的主要原因,并且在很大程度上仍然是不可能的。因此,迫切需要更好地了解转移,以改善晚期疾病的预后。在这里,我们调查了探索转移性癌基因组学的研究的景观。我们考虑了转移基因组驱动因素的证据,并探索了研究转移扩散模式的研究。引言转移涉及癌细胞从原发性肿瘤到体内远处的器官的分散和随后定植。每个转移性细胞代表其父母原发性肿瘤的进化分支,共享基因组疤痕和关键驱动因素改变,但必须能够克服转移性级联反应的步骤。尽管在理解和治疗原发性肿瘤方面取得了显着进展,但与转移性癌症有关的生存仍然很差,其中90%与癌症相关的死亡与转移有关(Lambert等,2017)。转移代表了进化过程(Turajlic和Swanton,2016年),并以其最基本的形式涉及一个活的癌细胞进入循环,生存并退出血液,并嵌入具有潜在敌对的微环境的偏远组织中,并形成新的转移性肿瘤。小鼠的实验工作表明,这一过程固有地效率低下。绝大多数癌细胞在循环中灭亡,卡在毛细血管中,或者在退出血液后的24小时内凋亡(Lambert等,2017)。和成功定居远处器官的癌细胞的证据表明,这些细胞只有一部分成长为宏观转移性肿瘤(Massague和Obenauf,2016年)。癌细胞本身不受转移的阳性选择。相反,可能会选择一系列关键适应或标志,这些适应性或标志可能会增加癌细胞获得获得转移性潜力所必需的特征的可能性,包括运动,免疫逃避和在远处的循环中生存和增殖的能力。转移潜能可能不限于单个或选择的几个细胞自主性状,而是取决于癌细胞和宿主基质的复杂相互作用。如下所用所用的“转移性电位”一词可能涵盖癌症表型的任何组合,这些癌症表型的组合能够促进转移性传播,无论是主要由快速增殖和细胞脱落而驱动,从而增加了细胞数量的转移可能性,或者通过在循环和远处的循环和远处的探索能力中提高了转移的可能性。 传统上转移性传播被认为是癌症发展的最终产物,但是,随着新兴数据,这种转移性进化的线性观点变得更加细微。 最近的工作揭示了早期和晚期转移如下所用所用的“转移性电位”一词可能涵盖癌症表型的任何组合,这些癌症表型的组合能够促进转移性传播,无论是主要由快速增殖和细胞脱落而驱动,从而增加了细胞数量的转移可能性,或者通过在循环和远处的循环和远处的探索能力中提高了转移的可能性。传统上转移性传播被认为是癌症发展的最终产物,但是,随着新兴数据,这种转移性进化的线性观点变得更加细微。最近的工作揭示了早期和晚期转移
抽象的自主区域保护是多代理系统中重要的研究领域,旨在使捍卫者能够防止入侵者进入特定地区。本文提出了一个多代理区域保护环境(MRPE),其守卫者,防守者损害赔偿和入侵者逃避策略针对捍卫者。MRPE由于其高的非机构性和有限的拦截时间窗口而对传统保护方法提出了挑战。为了克服这些障碍,我们修改了进化增强学习,从而产生了相应的多代理区域保护方法(MRPM)。MRPM合并进化算法和深度强化学习的优点,特定利用差异进化(DE)和多代理的深层确定性政策梯度(MADDPG)。促进了各种样本探索并克服了稀疏的奖励,而MADDPG则训练防守者并加快了融合过程。此外,为多机构系统量身定制的精英选择策略是为了增强防御者的协作而设计的。本文还提出了巧妙的设计,以有效地推动政策优化的功能和奖励功能。最后,进行了广泛的数值模拟以验证MRPM的有效性。
对职位的描述:研究员将在当地和国际会议上开发和开展研究项目,撰写论文,申请奖学金和其他资金,以及导师的学生和其他实验室成员。实验室中当前的主要研究方向包括微生物生长动态的演变以及生态相互作用对微生物群落适应的影响,但该立场将允许根据同胞的利益和实验室的广泛目标,在开发新方向方面具有显着的灵活性。同伴的研究可能涉及实验(湿角生物学),计算和理论成分的任何组合。
助理教授ISTEC-LISBON高级高级技术研究所,葡萄牙摘要:自人类的开始以来,人类试图相互交流,但是只要有交流,就会有干扰。因此,为防止在重要的通信中发生干扰,创建了密码学和隐肌。加密将当前文本转换为不可感知的文本,而隐肌掩盖了信息,以使其不可感知。这些技术已经有了数千年的历史,部分遵循不同的道路,毫无疑问,加密术是几个世纪以来最突出的技术,因为它一直是军事领导人和统治者的服务。毫无疑问,最受欢迎的是一个叫做凯撒密码的人,因为罗马皇帝朱利叶斯·凯撒(Julius Caesar)在公元前4世纪左右使用。鉴于其简单性和多功能性,引起了其他一些,例如:Vigenere,Beaufort,Gronsfeld等。在本文中,我们将研究Cesar密码与:Vigenere,Beaufort和Gronsfeld的进化关系。索引术语 - ryptography,替代密码,单个字样,多符号,凯撒密码,vigenèrecipher,beaufort密码和gronsfeld密码。
美国陆军正在向轻型、快速部署、高杀伤力部队时代过渡。FCS 系统计划将开发新的材料解决方案,这对于陆军目标部队在战略、战役和战术层面上“先见、先理解、先行动、果断完成”的能力至关重要。装备 FCS 的部队将在军事行动的每个阶段都具有战略响应能力和战术主导地位。FCS 将作为联合团队的一部分运作,其联合作战架构将提供增强的 C4ISR 能力,以实现主导态势感知和精确打击。FCS 将是一个由一系列有人和无人空中和地面平台组成的网络化系统,配备地面机动和机动支援/维持系统(见图 1)。FCS 增量 1。增量 1 初始作战能力 (IOC) 将在 2010 财年实现。
摘要在本章中,我们概述了神经系统的解剖学,功能和演变。我们的重点将集中在脊椎动物组的大脑上,其脑形态和功能变化最大,即肌动杆菌骨膜。我们首先描述了中心(CNS)和自主神经系统,然后在我们总结了大脑区域及其连接及其连接并高显示不同的虚拟分类单元之间的一些相似之处和差异之前,描述了CNS(脊髓,脊神经,颅神经)的主要远端成分(脊髓,脊神经,颅神经)。本章的第二部分致力于脑部解剖结构的变化,包括讨论比较脑解剖学进化和脑可塑性。我们根据孔雀鱼(Poecilia neticulata)的人工选择的大脑和小脑部的孔雀(Poecilia neticulata)的结果来摘要大脑大小的进化成本和收益。在福利方面,我们得出的结论是,它们的大脑多样性反映了薄膜的多样化认知需求。然而,它们的终生神经发生率也应使个人能够认知能够适应一定范围的环境条件。
本文已发表在《自然评论癌症》中。这是作者版本。请注意,这些数字已由NRC编辑,并且在已发布的版本中有所不同。您可以在这里找到论文:https://www.nature.com/articles/s41568-024- 00734-2您可以引用文章,如下:Laplane,L。,Maley,C.C.。癌症的进化论:挑战和潜在解决方案。NAT REV CANCER 24,718–733(2024)。癌症的进化理论:挑战和潜在解决方案Lucie Laplane 1,2和Carlo Maley 3,4,5,6,†1:CNRS,Paris I Pantheon-Sorbonne,UMR 8590 Institut d'Histoire d'Histoire et histoire et physimophie et physimophie et physepophie et persionophie et sciences et des desiques et eforce et teciques et des paris,paris 7 cancer 7衰老,壁画,法国3:美国亚利桑那州立大学亚利桑那州立大学亚利桑那州癌症进化中心,美国亚利桑那州85287,美国。4:美国亚利桑那州立大学生命科学学院,美国亚利桑那州85287,美国。5:美国亚利桑那州立大学生物陈述中心,安全与社会,美国亚利桑那州坦佩,亚利桑那州85287,美国。6:美国亚利桑那州立大学进化与医学中心,美国亚利桑那州85287,美国。†电子邮件:maley@asu.edu摘要癌症的克隆进化模型是在1950年代至1970年代开发的,在二十一世纪成为癌症生物学的核心,主要是通过对癌症遗传学的研究。尽管它已经证明了其价值,但其结构受到了表型可塑性,遗传性非遗传形式的观察,克隆健身的非遗传决定因素和基因的非树样传播的挑战。我们旨在解决克隆的定义甚至存在混乱。克隆进化模型的性能和价值取决于经验范围,进化过程与癌症有关,及其理论能力来说明这些进化过程。在这里,我们确定了克隆进化模型的理论性能中的限制,并提供解决方案以克服这些限制。尽管我们没有声称克隆进化可以解释有关癌症的所有内容,但我们显示了在癌症动力学中已经确定了多少复杂性可以集成到模型中,以提高我们对癌症的当前理解。引言癌症是整个空间和时间上异质性的细胞种群。这种多样性目前是一个主要的临床问题,限制了大多数癌症治疗的效率,因为通常有一部分细胞对使用任何治疗方法有抵抗力1,2。多样性还限制了预后的准确性和我们预测其对干预措施的反应的能力,因为活检可能无法代表整个肿瘤,并且对于它如何随时间变化而有很强的随机成分。迫切需要更好地理解这种多元化的机制才能更好地治疗癌症。在二十一世纪获得关注的细胞多样化的一种解释机制是克隆进化:癌细胞通过遗传和表观遗传改变的积累而多样化,这可以改变细胞的相对适应性,从而导致克隆膨胀或通过自然选择进行克隆扩张或收缩。给定进化原理和种群遗传学的工具可以成功地应用于癌细胞3、4。然而,癌症进展的进化观点受到挑战5,结果表明,癌症内表型异质性在很大程度上可以独立于克隆的遗传学6。