Version number Issue date Circular number 1.0 2016-07-29 7-2016 1.1 2016-11-03 9-2016 1.2 2017-01-03 2-2017 1.3 2017-02-24 6-2017 1.4 2017-03-01 7-2017 and 8-2017 1.5 2017-04-19 9-2017 1.6 2017-08-25 10-2017 1.7 2017-08-30 11-2017 1.8 2017-09-21 12-2017 1.9 2017-11-17 13-2017 13-2017 1.10 2018-02-02-02 2-2018 1.11 2018-02-21 2018-02-21 3-2018 1.12 2018-02-2018-02-21 2018-02-21 4-2018 1.13 2018 13 2018 2018-02-21 5-1018 1.18 1.18 2018 2018 - 2018年2月14日 - 2018年2月14日 - 2018年2月14日 - 2018年2月14日 - 2018年2月14日 - 2018年2月14日 - 2018-02-21 7-2018 1.16 2018-05-07 8-2018 1.17 2018-05-07 9-2018 9-2018 1.18 2018-05-28 10-28 10-2018 1.19 2018-06-22 2018-06-22 11-2018 11-2018 14-2018 1.23 2018-10-11 15-2018 1.24 2018-10-31 16-2018 1.25 2019-02-08 2-2019 1.26 2019-02-08 3-2019 1.27 1.27 2019-03 2019-03-03 2019 1.28 4-2019 1.28 2019 1.28 2019-03-03-03-03-03-2019 2019 1.29 2019 1.29 2019 1.29 2019 1.29 2019 1.29 2019 1.29 2019,9 2019 nes 1.29 2019 1.29 1.29 2019 1.29 2019 1.29 1.29 1.29 2019 1.29 2019,9 2019 nsatry。 8-2019和9-2019 1.30 2019-06-21 11-2019 1.31 2019-07-02 13-2019 1.32 2019-07-18 15-2019
通信和网络安全;计算和仿真;以及传感器和计量学。巴塞罗那,2025年3月4日。-Telefónica今天在移动世界大会(MWC)上宣布,创建了一个专门针对量子技术的卓越中心,该公司在该知识领域内的内部治理模型将围绕该中心。宣布是在会议期间的“TelefónicaNetworks的现在和未来”,该会议由Enrique Blanco,Telefónica的Global Ctio和Andrea Folgueiras,TelefónicaSshispam和Global Gctio的Andrea Folgueiras和Andrea Folgueiras和公司的全球GCTIO介绍。卓越中心旨在协调公司不同领域的所有创新线路,以促进新解决方案,激活与第三方的技术协议并参与论坛,以与该行业分享该集团的量子建议。为此,中心将利用量子技术的三个基本轴:通信和网络安全;计算和仿真;以及传感器和计量学。本质上,Telefónica旨在利用量子计算引起的机会,以加强对公司网络和系统以及其客户的保护,并确定最合适的工具和流程以增强其安全性并通过其服务中和风险。为此,该公司已经开始在其策略或加密稳定性中采用加密敏捷性方法,以实现其系统具有必要的机制来迅速对加密威胁,保护密钥,证书和数据的反应,并面对量子安全的未来。telefónica也正在开放这种具有加密敏捷性的创新方法,并使客户可以从中受益。
1。Alberts,b。约翰逊(Johnson)刘易斯(J。);拉夫(M。)罗伯茨,K。 Walter,P。DNA的结构和功能。 在细胞的分子生物学中,第四版。 ;加兰科学:纽约,2002年。 2。 Hazel,P。; Huppert,J。; Balasubramanian,S。; Neidle,S。循环长度依赖性g-四链体的折叠。 J. am。 化学。 Soc。 2004,126,16405-16415。 3。 Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。 生物聚合物2012,97,950-962。 4。 sket,p。; Korbar,T。; Plavec,J。 D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。 J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Alberts,b。约翰逊(Johnson)刘易斯(J。);拉夫(M。)罗伯茨,K。 Walter,P。DNA的结构和功能。在细胞的分子生物学中,第四版。;加兰科学:纽约,2002年。2。Hazel,P。; Huppert,J。; Balasubramanian,S。; Neidle,S。循环长度依赖性g-四链体的折叠。J.am。化学。Soc。2004,126,16405-16415。 3。 Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。 生物聚合物2012,97,950-962。 4。 sket,p。; Korbar,T。; Plavec,J。 D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。 J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。2004,126,16405-16415。3。Bansal,A。; Prasad,M。;罗伊(Roy) Kukreti,S。人类甘露糖受体基因编码区的短含GC的短壁画显示出构象开关。生物聚合物2012,97,950-962。4。sket,p。; Korbar,T。; Plavec,J。D(TGGGGT)内极性位点反转的3'-3'反转对四重奏间阳离子结合的影响。J. Mol。 结构。 2014,1075,49-52。 5。 Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。J. Mol。结构。2014,1075,49-52。5。Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。 proc。 natl。 Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Gupta,R。C。; Golub,E。I。; Wold,M。S。; Radding,C。M.由RECA家族的重组蛋白促进的DNA链交换的极性。proc。natl。Acad.Sci。 U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Acad.Sci。U.S.A. 1998,95,9843-9848。 6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。U.S.A. 1998,95,9843-9848。6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。 基因开发。 1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。6。DeLaat,W。L。; Appeldoorn,E。; Sugasawa,K。; n。 Jaspers,N。G. J.; Hoeijmakers,J。H. J. J.人类复制蛋白A的DNA结合极性在核苷酸切除修复中核酸酶位置。基因开发。1998,12,2598-2609。 7。 Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。1998,12,2598-2609。7。Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。 PLOS ONE 2012,7。 8。 nucl。Balasingham,S。V。; Zegeye,E。D。; H. Homberset; Rossi,M。L。; Laerdahl,J.K。; Bohr,V。A。; Tonjum,T。结核分枝杆菌DNA解旋酶XPB的酶活性和DNA底物特异性。PLOS ONE 2012,7。8。nucl。lin,Y。H。; Chu,C.C。; Fan,H。F。; Wang,P。Y。; Cox,M。M。; Li,H。W.在没有ATP水解的情况下,5到3链交换极性是RECA核蛋白丝的内在性。ac。res。2019,47,5126-5140。9。saito,i。;高山Sugiyama,H。; Nakatani,K。通过电子传递通过电子传递进行了光诱导的DNA裂解 - 表明位于5'鸟嘌呤的鸟嘌呤残基是最含电子的位点。J.am。化学。Soc。1995,117,6406-6407。
摘要出生队列研究提供了有关整个生命过程中主题的宝贵数据,包括健康,教育,社会经济状况和福祉。结果,它们是生物社会研究人员回答众多复杂研究问题的重要资源。然而,尽管被定位为代表其国家或地区背景的代表,但队列研究通常无法捕捉边缘化群体的经验。这样一个群体是性和性别少数(或LGBTQ +)的人,直到最近,他们在出生队列中都在很大程度上看不见。这在过去五十年中发生了巨大的社会和态度变化,并且与异性恋者相比,社会,政治,经济,健康以及福祉差异的明确证据。但是,由于数量少,定量分析的机会受到限制,即使捕获了LGBTQ +数据也会忽略LGBTQ +数据。本文简要概述了英国出生队列研究中的标准数据收集和分析技术如何捕获酷儿生活(但未)。然后,使用1970年出生的队列,作者探讨了以人为本的混合方法肖像的可能性,以提高对该群体的生活轨迹的理解。
摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
传统的机油燃料汽车。燃料电池车辆依赖于将氢或甲醇转化为电的燃料电池。当前的领先技术是质子交换膜燃料电池(PEMFC),该技术用气态氢和质子导电膜运行。它提供了许多好处:良好的效率,可靠性和耐用性。但是,整体成本仍然很高,并且在传播技术方面的性能和耐用性方面的改善仍然是必要的。到目前为止已经研究了两种主要策略:一种涉及较便宜的催化剂的设计和开发,例如Pt/motybdenum Carbides; [2]另一个有吸引力的解决方案是在高温下操作PEMFC,这将简化热量管理,提高效率,提高质量运输,并极大地限制了一氧化碳对含量的催化剂。[3]美国能源部为PEMFC操作设定了120°C的操作温度。然而,由全氟磺酸(PFSA)聚合物组成的最先进的质子交换膜(PEM)被认为是基准材料,具有较差的机械和导电性能,可大大降低其在t> 100°C时的功效,从而限制了工作温度。在过去的二十年中,科学界制定了许多策略,以增强High
结果:VNI的读取器2额定总体图像质量高于VNC(4.90 vs. 4.00; p <.05),而阅读器1没有发现显着差异(4.96 vs. 5.00; p> .05)。在VNC和VNI中的读者之间观察到了实质性的一致性(Krippendorff的Alpha范围:0.628-0.748)。两位读者对VNI的频率不完全发生频率(读者1:29%vs. 15%; p <.05;读者2:24%vs. 20%; p> .05)。尿酸和较小的石头(<5 mm)比VNC和VNI中的Caox和较大的石头更有可能被减去。总体而言,与VNC相比,VNI的石材减法率更高(读者1:22%比16%;阅读器2:25%vs. 10%; p <.05)。辐射剂量和管电压均未显着影响石材减法(p> .05)。
北卡罗来纳州的联合医疗保健; UnitedHealthCare of Ohio,Inc。;俄克拉荷马州的联合医疗保健;南卡罗来纳州的联合医疗保健;德克萨斯州的UnitedHealthCare;华盛顿州俄勒冈州的UnitedHealthcare;威斯康星州的UnitedHealthcare和爱荷华州河谷的UnitedHealthcare计划。提供的行政服务
发表的临床试验尚未提供证据来支持血浆置术对当前治疗方案的功效和安全性,以列出本政策中列出为研究的指示。可用的文献反映了涉及少量受试者的研究,表明血浆置换可能有益于治疗严重,耐药性的pemphigus dulgaris或bullous pemphigoid的患者,即对标准疗法不反应的患者,或者需要对标准治疗的反应或需要高剂量的类固醇或免疫抑制剂。然而,两次系统评价(N. Khumalo等,2005和G. Kirtschig等,2004)鉴定出在大肠spe虫患者的治疗方案中添加血浆置换术,因此没有任何好处。然而,两次系统评价(N. Khumalo等,2005和G. Kirtschig等,2004)鉴定出在大肠spe虫患者的治疗方案中添加血浆置换术,因此没有任何好处。