摘要:通过单个因子和正交测试获得了304L不锈钢的最佳SLM条件。结果表明,当激光输出功率为190 W时,最佳硬度(75 hrb)和相对密度(RD 99.24%)可以获得,扫描距离为0.09 mm,扫描速度为800 mm/s。鱼尺度的微观结构是均匀的,紧凑,最佳样品中有几个孔。细胞颗粒在熔融池的边缘附近随机分布,并形成了一些优选的颗粒柱晶体结构。在细胞结构之间观察到大量的纠缠位错,形成位错簇。球形纳米原子,富含Si,Mn和O。样品的机械性能是高度各向异性的,并且在拉伸裂缝处有明显的颈部和延展性。
摘要:随着元信息开始发现工业应用,有必要开发可扩展且具有成本效益的制造技术,这些技术可提供低于100 nm的分辨率,同时提供高吞吐量和较大的面积图案。在这里,我们证明了使用UV纳米印刷光刻和深层反应离子蚀刻(Bosch和低温)的使用。可靠的过程,用于制造高模式有限的硅矩形支柱。证明了结构的质量,跨表镜的质量,这些镜头表明了衍射有限的聚焦,并接近NIR波长λ∈(1.3 µm,1.6 µm)的理论效率。我们演示了一个过程,该过程消除了博世过程的特征性侧壁表面粗糙度,从而使90度垂直侧壁光滑。我们还证明,在Bosch侧面表面粗糙度(或45 nm的压痕(或扇贝))的情况下,元表面镜头的光学性能不会受到不利影响。为实现全晶片覆盖而定义了下一步的开发步骤。
本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
− 根据工件尺寸和材料选择合适的机器系列 − 铣削策略和编程 − 选择刀具和工件夹紧系统 − 定义特定的 HSC 粗加工和精加工参数 − 定义所需的附加设备(换刀装置、测量系统、冷却液系统等) − 结果是配置最适合您的工艺的 ENDURA ®。
乳腺癌和卵巢癌已成为全球女性癌症死亡的主要原因[1]。同时,酪氨酸激酶细胞膜受体的一种,人表皮生长因子受体2 (HER2) 已被证明在许多乳腺癌和卵巢癌中存在扩增和过表达[2]。在过去的几十年中,针对 HER2 受体的单克隆抗体技术得到了迅速发展,相应的抗体-药物偶联物 (ADC) 已被成功探索用于 HER2 靶向癌症治疗,即利用抗体作为载体,将细胞毒药物高效、选择性地递送到肿瘤细胞内[3-6]。然而,ADC 药物仍然存在一些不可避免的缺陷,例如体积大、制备复杂、偶联位点不特异性、组织穿透性差,这些都可能在一定程度上影响治疗效果[7-9]。为了突破这些局限性,人们开发了各种较小的蛋白质片段作为替代药物载体,如单体抗体 [ 10 ]、抗运载蛋白 [ 11 ]、DARPins(设计的锚蛋白重复蛋白)[ 12 ] 和纳米体 [ 13 ]。除这些候选分子外,亲和体是一种由 58 个氨基酸组成、形成三螺旋束的小亲和蛋白(6~7 kDa),由于其对大量靶蛋白或肽具有高亲和力而受到广泛关注 [ 14 – 16 ]。与抗体相比,亲和体分子具有几个潜在优势,例如由于体积小而能够快速组织穿透、皮摩尔亲和力具有高选择性,并且易于通过微生物发酵获得 [ 17,18 ]。更重要的是,原始亲和体序列中缺乏半胱氨酸,这为我们提供了将半胱氨酸引入序列中通过硫醇化学与有效载荷进行位点特异性结合的机会[19,20]。亲和体分子尺寸小,有利于组织渗透,但同时也导致肾脏快速清除。快速的肿瘤渗透和快速的血液清除性能使亲和体分子适用于各种医学成像应用,如正电子发射断层扫描(PET)成像[21,22]、光学和磁共振成像(MRI)[23,24]和荧光引导手术[25,26],但显然不适合癌症治疗[27]。最近,一些研究者尝试将亲和体分子与细胞毒药物结合,形成亲和体介导的靶向抗癌药物。例如,Jacek Otlewski 等人通过
镁(以下称“Mg”)合金的比重为1.8以下,仅为轻量化材料铝(以下称“Al”)的三分之二。最近,在薄型笔记本电脑机身中,Mg合金的轻量化价值得到了认可。住友电气工业株式会社镁合金开发部将独有的急速凝固技术*1应用于通用的AZ91D Mg合金*2,制造出具有轻量化、高强度、高耐腐蚀性特点的AZ91板材,并致力于将其实际应用于薄型笔记本电脑机身。最近,受新型冠状病毒感染的肺炎疫情影响,社会环境发生了重大变化,个人和社会规范发生重大转变,包括个人交流和企业运营在内的所有社会活动都正在向数字化和线上化转变。为了普及推动数字化的IoT、AI技术以及加速其应用的第五代移动通信系统(以下简称“5G”),必须完善基础设施。人们期待包括个人和产业在内的社会能够利用这些技术创造新价值、实现社会创新。(1)实现社会创新的一大障碍是基础设施建设时电子设备的发热量。(2)作为重要电子设备和零部件的CPU所使用的半导体集成度不断提高,发热量集中化。预计随着IoT和5G的应用,功耗会增加,局部发热量也会增大。(2)近年来,薄型笔记本电脑、智能手机等电子设备机身的体积和尺寸不断缩小。受这些因素影响,预计发热量将超过电子设备的允许工作范围。电子设备的冷却技术将变得比以往任何时候都更加重要。 (2)减少
。2021-001 04-JAN-21 2 iveles ibaan,奇迹,基本斗士编号公司LAL-LO太阳能项目110.703 Maxingal/司法管辖区,LAL-LO,CAGAYA DOE-EPIMB-SIS号Energy Genergation,Inc。 Burrey存储20。拉古达·拉古纳(Lagudaan Lagunaan)2021-01-006 26-JAN-21 6 PV Sinag Power Inc. LAOG SOAR太阳能厂98.136 Aguillar。abov> Clara Battery Energy Store Storage位于Barangay Ambulao 20号,Bokue Doe-sis No.。2021-009 17-FIVE-21 92021-010 18-Fiv-21 102021-011 19-FEB-21 11 Raslag Corporation。2021-012 23-Five-212021-04-024 29-21 24一个2021-013 24-FIVE-21 13 San Narciso和San Narciso,San Narciso和San Marcelino。2021-02-014 24-FEB-21 14 Nortesol Incorporated Edro浮动太阳能PR PR 250 San Pedro,Laguna Doe-Epimb-Sis No.。 Taguig浮动Projec 250 Laguna de Bay和Taguig City Doe-Epimb-sis No.。 Morone和Hermosa,Bataan Doe-sis No.2021-03-017 05-MAR-21 17 GNPOPER LTD。公司宿雾,2021-04-018 05-21 18公司发展周期,2021-04-049 05-21 19。 Kabamp City of Kabagon Power 300 p。。湾2021-04-022 22-APR-21 21 22吉加王牌6,Inc。拉古纳群岛;和泥泞的sis。。科隆,纳迦市,美国能源部2021-04-025 30-APR-21 21 21 5,Inc。 quee-sis号。 250 Real,Quee-Sis No.2021-05-027 12-May-21
2.基于 Graphics Core Next 架构的 AMD Radeon™ 和 FirePro™ 独立 GPU 由多个独立执行引擎组成,这些引擎称为计算单元 (CU)。每个 CU 包含 64 个着色器 (流处理器) 协同工作。GD-78 3.了解有关 AMD Eyefinity 技术的更多信息,请访问 amd.com/eyefinity。4.HEVC 加速取决于是否包含/安装兼容的 HEVC 播放器。GD-81 此处包含的信息仅供参考,如有更改,恕不另行通知。尽管在编写本文档时已采取一切预防措施,但其中可能包含技术上的不准确之处、遗漏和印刷错误,AMD 没有义务更新或以其他方式更正此信息。Advanced Micro Devices, Inc. 对本文档内容的准确性或完整性不作任何陈述或保证,并且不承担任何责任,包括对本文所述 AMD 硬件、软件或其他产品的操作或使用不侵权、适销性或特定用途适用性的默示保证。本文档不授予任何知识产权许可,包括默示许可或禁止反言许可。适用于购买或使用 AMD 产品的条款和限制在双方签署的协议或 AMD 的标准销售条款和条件中规定。© 2020 Advanced Micro Devices, Inc. 保留所有权利。PCIe 和 PCI Express 是 PCI-SIG Corporation 的注册商标。PID 1746685-CAMD、AMD 箭头徽标、Radeon 及其组合是 Advanced Micro Devices, Inc. 的商标。DirectX 是 Microsoft 的注册商标。HDMI、HDMI 徽标和高清多媒体接口是 HDMI Licensing, LLC 在美国和其他国家/地区的商标或注册商标。本出版物中使用的其他产品名称仅用于识别目的,可能是其各自公司的商标。