隧道光谱已在2D材料的范围内广泛使用,以探索电子 - phonon耦合(自然物理学4,627,2008),以解决电子缺陷状态(Commun Phys 1,94,2018),并调查了共鸣式隧道(Nature Nanotech tunneling(Nature Nanotech 9,808,808,2014,2014,2014年)。此外,在半导体异质结构的传输测量中也观察到了激子(J. Appl。物理。81,6221,1997)。在所有这些研究中,相关状态都被电荷注入激发。另一方面,在我们的工作中,TMD坐在电路外,没有电荷载体注入TMD。
标题 资助机构 年份 参与 硅中的氢 INTAS, 1 93-622 1993–1996 合作者 硅中辐射缺陷处的激子 RFBR, 2 99-02-16652 1999–2002 — ′′ — 硅中的空位复合体 RFBR, 02-02-16030 2002–2005 — ′′ — 金属/半导体界面上的表面增强拉曼散射 (SERS) DFG, 3 436 RUS 17/86/02 2002–2003 首席研究员 硅中紧密 Frenkel 对的检测 DFG, 463 RUS 17/22/06 2006 — ′′ — 半导体中氢分子的性质 DFG, WE 1319/14 2004–2007 同事
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能:
不断增长的全球能源需求与资源和空间限制相结合,需要增强结晶硅太阳能电池,这是当前的主要太阳能技术。但是,由于他们开始接近理论效率限制,他们的效率仅在最近20年中逐渐提高。主要损失的来源是热化,其中超过硅吸收的带隙的能量是热量的。有机分子中的单线激子裂变已被提出以减少这些损失。通过使有机层吸收高能光,并将从单裂裂变过程产生的三重态激子转移到硅中,该光谱区域中的光电流可以增加一倍,从而将效率从传统限制提高的29.4%提高到42%。
图 2. (a) 机械剥离的 MoS 2 的光学显微照片,其中单层区域突出显示。(b) 沉积 1 nm CoPc 之前和之后单层 MoS 2 的拉曼光谱。A 1g 和 E 2g 峰之间的间隔约为 19 cm -1 ,表明为单层 MoS 2 。1100 – 1500 cm -1 范围内的拉曼模式是 CoPc 的特征。(c) 机械剥离的 MoS 2 和含有 1 nm CoPc 的 MoS 2 的 300 K PL 光谱。A 激子和相关的三子在 675 nm 处很突出,由于 B 激子的存在,可以看到一个小的高能肩。(d) MoS 2 和含有 1 nm CoPc 的 MoS 2 的 10 K 光致发光。在此温度下,除了 660 nm 和 600 nm 处的 A 和 B 激子外,MoS 2 缺陷发射在 700 nm 处也变得明显,
激子特性。例如,它们显示出量子孔限制,大激子结合能,快速辐射重组率以及狭窄和宽带光致发光。1 - 3从结构上讲,这些特性可以通过(i)无机笼的化学成分进行调节; (ii)对其合成中使用的大机阳离子类型的变化; (iii)八面层的数量。大多数效果都集中在控制无机层之间分配的有机部分的性质上,以修改金属的连接和方向 - 卤化物八面体板,因为它发生在Ruddlesdeledlesdeledlesdleper popper结构中。4 - 7以这种方式,可以使用基于溴化物的LP的高度扭曲的晶格,从而诱导自被捕的激子的形成,从而导致间隙内态的白光发射。8 - 11
我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。
图1。单层MOS 2的光致发光中的异常功率依赖性。(a)(左列)光致发光区域的空间图像和(右列)在不同入射功率密度下PL的空间光谱曲线的二维图像。这两种类型的图像共享相同的垂直轴。如图所示,入射功率被标记。(b)PL光谱从照明区域的中心提取。(c)PL强度(黑色曲线)和PL区域的大小(红色曲线)具有入射力。(d)位置(具有最大振幅)和PL峰的FWHM作为入射力的函数。(c)和(d)中有白色的两个区域表示两个过渡,从游离激子(Fe)到电子孔等离子体(EHP),从电子孔等离子体(EHP)到电子孔液体(EHL)。
自2005年发现石墨烯以来,相互作用的2D电子系统中特殊地面的形成引起了人们的关注[1]。除了磁有序外,还报告了有关最近实验中的电荷顺序和与Mott阶段配对的报道[2-4]。在WSE 2 /WS 2层[5,6]和α -rucl 3 [3,4]中的最新实验中,我们分析了在双层激子中存在莫特相的条件,并且在量子和热波动方面的稳定性及其稳定性。氯化氯化物α-相(α -rucl 3)是一种具有强旋轨耦合的分层化合物,以其有趣的电子特性而闻名,尤其是其在量子材料中的潜在使用和自旋液体相[7-12]。其电子结构受RU 4 d轨道和晶体场效应的影响。α相具有强旋轨耦合的特征,该耦合表现出多轨蜂窝状莫特绝缘阶段[3,7,13-19]。对于相关电子系统的研究,此阶段特别有趣。已经对α -rucl 3的蜂窝晶格的电子结构的作用进行了广泛研究,使用光发光表格[14],拉曼散射[20-22],光发射光谱[23],THZ光谱[24,25],x-雷雷镜[26] intrastry sptription [26] intrastry Sptiptrys [26] [27]。尽管Mott Gap的大小正在争论中,但在实验研究中已经证明了Mott绝缘子在α -RUCL 3中的存在[13,17,21,23]。Qiu等。 参考文献中报告。 1。Qiu等。参考文献中报告。1。调查Mott绝缘子的核心任务之一应解决带电颗粒分布的刚度。这在很大程度上取决于间隙的大小相对于跳跃速率以及材料的化学掺杂。通过化学掺杂Mott绝缘子来调整材料特性是非常具有挑战性的。具有示例性莫特绝缘子的有前途的候选者是α -rucl 3,顶层的石墨烯是α -rucl 3。而α -rucl 3带有孔,而额外的石墨烯片充当电子储层。[3]如何量身定制由石墨烯和α -rucl 3组成的范德华异构结构等电子结构。该材料的示意图如图然后,石墨烯层的电子和α -rucl 3层中的孔会受到有吸引力的层间相互作用,从而导致激子的形成[28]。在此设置中,激子的密度通过电子的密度控制,后者通过连接到石墨烯片的电栅极调节[3]。栅极电压诱导激子气体的有效化学电位µ。与化学掺杂相反,来自石墨烯的掺杂提供了连续的可调节性,并且不会引入不希望的晶格失真。分别对电子和孔的内部排斥可以产生电荷密度波或广义的Wigner晶体[29]。电荷顺序也可能是由电子 - 波相互作用引起的[30]。基于自一致的Hartree-fock或连贯的电位近似[31]的最新计算表明,如果对材料的特定细节计算自我能量,则复杂的自我能量可以描述实验结果的合理近似来描述实验结果。不参考特定的显微镜机制,这是对双重
