在过去十年中,由于一代又一代 EGFR 酪氨酸激酶抑制剂 (TKI) 的开发,表皮生长因子受体 (EGFR) 基因突变的非小细胞肺癌 (NSCLC) 的治疗发生了革命性的变化 (1,2)。然而,EGFR 外显子 20 插入 (EGFR 20ins) 占所有 EGFR 突变 NSCLC 病例的约 10%,不太可能从这些已获批的 EGFR-TKI 中获益 (3)。幸运的是,针对 EGFR 20ins NSCLC 的治疗已取得重大进展 (4)。2020 年,两种新药 mobocertinib 和 amivantamab 已获批用于治疗这一特定适应症。然而,与针对典型 EGFR 突变的 EGFR-TKI 相比,这些药物的疗效相当中等,在这种情况下需要其他更有效的抗癌药物。本文介绍了一例 EGFR 20ins 晚期腺癌患者,该患者之前使用 mobocertinib 治疗失败,但从第三代 EGFR-TKI furmonertinib 的高剂量治疗中获益。该病例可能为 EGFR 20ins 的 NSCLC 患者提供一种替代治疗方法。我们根据 CARE 报告清单(可访问 https://atm.amegroups.com/article/view/10.21037/atm-22-1167/rc)撰写了以下文章。
摘要背景是von Hippel-Lindau(VHL)疾病患者的新发现的VHL基因的生殖线突变的发生率以及尚不清楚paragangliomamoma或pheocholomopytomamoma(PPGL)的患者。方法我们研究了一个大型国际多中心队列,由1167例患者进行了阴性基因检测。Germline DNA from 75 patients with a single tumour of the VHL spectrum ('Single VHL tumour' cohort), 70 patients with multiple tumours of the VHL spectrum ('Multiple VHL tumours' cohort), 76 patients with a VHL disease as described in the literature ('VHL-like' cohort) and 946 patients with a PPGL were screened for E1' genetic variants.在12例患者中检测到E1中的六种不同的遗传变异。两个被归类为致病性,3个为未知意义的变体,1个变体为良性。在7名无关患者中发现了RS139622356,但在基因组聚集数据库的31例患者中只有16名患者(p <0.0001)中描述了这种变体可能是复发突变,或者可能是一种修饰剂突变,或者赋予了VHL Empscer肿瘤和癌症的风险。结论VHL E1'隐秘外显子突变贡献了1.32%(1/76)的“ VHL-like”队列,至0.11%(1/946)的PPGL队列,并应在VHL临床疑问的患者中进行筛选,并添加到下一代序列测试(NGS)的临床疑问中。我们的数据突出了研究在深内含子序列中鉴定的变体的重要性,这些变体仅通过检查基因/外部的编码序列而遗漏。通过将全基因组测序实施到临床实践中,可能会更频繁地检测和研究这些变体。
结果:症状和实验室检查确认了GS的临床诊断。由Sanger测序验证增强的全面全外生态测序显示,EXON 5和C.2398G> A中的Exon 5和C.676G中的SLC12A3基因(c.1108g> c c.676G> c in Exon 20中)中的复合杂合突变(C.1108G> c)。OGTT Afirmed糖尿病和胰岛素抵抗增强,与我们评估过的GS患者不同。进一步的遗传分析确定了PDX1基因内的错义杂合突变(外显子1中的c.97c> g),该突变源自没有GS的患者的糖尿病母亲。此外,患者的兄弟,葡萄糖耐受性受损但规则的钾水平也有这种突变,暗示了PDX1基因突变对葡萄糖代谢调节的其他影响,超出了GS的已知影响。
图。有关外显子和内含子区域的符号DNA序列瞄准了外显子和内含子区域的DNA序列上的分类。在本研究中的设计和方法论,使用基于人工智能的系统进行了DNA序列中的外显子和内含子区域的分析。独创性通常首选用于评估文本数据的聚类方法在DNA序列上使用。这种情况降低了计算成本。的发现是解决生物信息学领域越来越多的数据的解决方案,建立了基于人工智能的结构,可提供低成本。因此,研究与遗传学有关的情况变得更加容易。结论DNA结构上的外显子和内含子区域的准确率为88.88%。宣布道德标准本文的作者宣布,本研究中使用的材料和方法不需要道德委员会许可和/或法律特殊许可。
P043 MUTYH 外显子 7 188 18416-SP0654-L29811 E1 c.536A>G (p.Tyr179Cys) MUTYH 外显子 13 193 21267-SP0655-L23442 E1 c.1187G>A (p.Gly396Asp) P072 MUTYH 外显子 7 184 18416-SP0654-L23441 D1 c.536A>G (p.Tyr179Cys) MUTYH 外显子 13 258 18417-SP0655-L23442 D1 c.1187G>A (p.Gly396Asp) P378 MUTYH 外显子 7 184 18416-SP0654-L23441 D1 c.536A>G (p.Tyr179Cys) MUTYH 外显子 13 258 18417-SP0655-L23442 D1 c.1187G>A (p.Gly396Asp) 注意:请查阅相应的探针混合物产品说明以获取有关外显子编号、突变命名和所用基因转录本的更多信息。
BRCA2 外显子 4 202 01600-L23751 C1 BRCA2 外显子 8 454 20632-L28323 C1 BRCA2 外显子 11 142 † 18385-L23778 C1 BRCA2 外显子 13 313 02280-L28326 C1 BRCA2 外显子 21 373 20629-L28321 C1 † 在 SD 反应中,此探针可能对某些实验条件敏感。应谨慎处理异常结果。 * 与其他探针相反,此探针在 SD 反应中显示突变信号而不是重复信号。 BRCA2 外显子编号来自 MANE 项目,基于 MANE Select 转录本。括号中披露了该产品说明先前版本的外显子编号。
131 参考 00797-L25925 A1 2 136 参考 18457-L23634 A1 2 143 SMN1 / 内含子 7 S0938-L26163 A1 nag27134T>G 148 SMN1 / 外显子 8 S0961-L25586 A1 nag27706-27707delAT 154 SMN1 / 外显子 8 S0960-L25957 A1 2 163 参考 02291-L17086 A1 2 172 参考 02978-L17087 A1 2 183 SMN1 / 外显子 7 14919-L17081 A1 2 191 参考 00559-L17088 A1 2 200 参考 00976-L17298 A1 2 208 参考 12490-L17096 A1 2 228 参考 14498-L17101 A1 2 237 参考 02334-L17301 A1 2 245 参考 14293-L17100 A1 2 255 参考 13128-L17099 A1 2 264 参考 07630-L17091 A1 2 272 参考 14361-L17098 A1 2 282 SMN2 / 外显子 7 14921-L17083 A1 2 292 参考 18491-L23716 A1 2 301 参考 12783-L13918 A1 2 311 参考 06425-L17092 A1 2 321 参考 01042-L17093 A1 2 331 参考 01043-L17094 A1 2 注意:此处使用的突变命名法可能与文献不同!此 SD084-S02 参考选择和分箱 DNA 产品说明中使用的外显子编号是传统的外显子编号(外显子 1、2a、2b 和 3-8)。此外显子编号与 SMN1 和 SMN2 的 NCBI 参考序列不同。有关所用外显子编号和基因转录本的更多信息,请查阅相应的探针混合物产品说明。
25摘要:哺乳动物心脏肌钙蛋白I(CTNI)包含一个高度保守的N末端延伸,含有蛋白激酶A靶标(SER 23/24),在β-肾上腺素能刺激期间被磷酸化以增加心肌细胞呈现速率。在这里,我们表明,tnni3的Exon 3编码外显子3的Ser ser和痣多次被伪造,以模拟SER 23/24磷酸化,而无需肾上腺素能刺激,促进了30种异常高的静息心率的进化(〜1000次降低了1000次BEATS -〜1000 BEATS min -1 -1 -1 -1)。我们进一步揭示了远距离相关的BAT家族中的替代外显子3剪接,并且外显子3-和外显子3 + CTNI同工型都掺入心脏肌纤维中。最后,人类TNNI3的外显子3被证明具有相对较低的剪接强度评分,提供了一种进化知情的策略,可以切除该外显子以改善心力衰竭期间的舒张功能。35
蛋白质。我们在此报告了通过同源定向修复在患者造血干细胞/祖细胞 (HSPC) 中进行基因校正,使用 CRISPR/Cas9 将腺相关病毒供体的 CYBB 外显子 1-13 或 2-13 cDNA 靶向插入内源性 CYBB 外显子 1 或外显子 2 位点。外显子 1-13 cDNA 的靶向插入不会恢复生理 gp91 phox 水平,这与 CYBB 表达对内含子 1 的要求一致。然而,外显子 2-13 cDNA 的插入完全恢复了吞噬细胞分化时 gp91 phox 和 ROS 的产生。添加土拨鼠肝炎病毒转录后调控元件不会进一步增强外显子 2-13 校正细胞中的 gp91 phox 表达,表明保留内含子 1 足以实现最佳 CYBB 表达。使用 i53 mRNA 暂时抑制非同源末端连接,靶向校正增加了约 1.5 倍。在 NSG 小鼠中植入后,校正后的 HSPC 产生了吞噬细胞,并恢复了 gp91 phox 和 ROS 的产生。我们的研究结果证明了
通过诱导有害外显子跳跃来恢复基因功能已被证明可有效治疗遗传疾病。然而,许多临床上成功的外显子跳跃疗法都是基于寡核苷酸的短暂疗法,需要频繁给药。基于 CRISPR-Cas9 的基因组编辑可导致外显子跳跃,是一种有前途的治疗方式,可以永久缓解遗传疾病。我们表明,机器学习可以选择破坏剪接受体并导致目标外显子跳跃的 Cas9 向导 RNA。我们通过实验测量了小鼠胚胎干细胞中 1,063 个向导 RNA 靶向的 791 个剪接序列的多样化基因组整合文库的外显子跳跃频率。我们发现,当使用阈值预测的外显子跳跃频率分别为 50% 和 70% 时,我们的方法 SkipGuide 能够以 0.72 和 0.91 的精度识别有效的向导 RNA。我们预计 SkipGuide 将有助于选择用于评估 CRISPR-Cas9 介导的外显子跳跃疗法的引导 RNA 候选物。