简介:帕金森氏症和阿尔茨海默氏症的疾病是两种常见的神经退行性疾病,其病因在很大程度上是未知的。这两种疾病具有相似的发病机理特征,包括特定神经元的进行性丧失和沉积蛋白的积累。外泌体的特征在于类似于细胞膜的脂质双层结构,源自整个体内的各种细胞,并且可以轻松地穿越不同的生物膜,例如血脑屏障。外泌体对于介体和细胞之间的信息很重要。因此,它们可以在大脑的正常和病理状况中发挥至关重要的作用,包括帕金森氏病和阿尔茨海默氏病等神经退行性疾病。本文回顾了外泌体在帕金森氏症和阿尔茨海默氏病的发病机理和治疗中的作用和应用。结论:外泌体的结构和生物发生在神经退行性疾病的诊断和进展中起着至关重要的作用。此外,了解有关在病理条件下外泌体形成和组成的复杂机制可以提供有价值的
摘要:研究弓形虫裂解物 (TLA exo) 刺激的树突状细胞衍生外泌体与霍乱毒素混合作为佐剂,在通过两种黏膜途径 (眼部和鼻内) 免疫的小鼠中的免疫原性。BALB/c 小鼠每隔 2 周注射 3 次 TLA exo 疫苗,并测量血清中的 IgG 水平以及泪液、唾液、粪便和阴道洗液中的 IgA 水平。为观察弓形虫特异性 B1 基因的表达,用 TLA exo 或 PBS exo (未用 TLA 刺激) 免疫感染 ME49 弓形虫囊肿的小鼠,并检查其脑组织。与仅用 PBS 处理的小鼠相比,通过鼻内途径接种的小鼠引起的体液和黏膜免疫反应明显更高。此外,与 PBS 对照组相比,通过眼部途径(滴眼液)接种的小鼠血清中弓形虫特异性 IgG 和泪液和粪便中的 IgA 含量明显更高。TLA exo 疫苗接种小鼠的 B1 基因表达明显低于 PBS 或 PBS exo 疫苗接种小鼠。这些结果表明,用 TLA exo 疫苗对小鼠进行眼部免疫有可能刺激全身或局部抗体反应。这项研究还强调了滴眼液疫苗作为弓形虫鼻腔疫苗替代品的优势。
摘要 胰腺导管腺癌 (PDAC) 是最难治愈的恶性肿瘤之一,5 年相对生存率仅为 6%。其治疗效果不佳是由于化疗耐药和独特的病理生理,即丰富的炎性细胞因子和细胞外基质 (ECM) 异常增生。基于骨髓间充质干细胞 (BM-MSCs) 能够影响 PDAC 的肿瘤微环境和恶性生长的理论,我们利用来自 BM-MSCs 的外泌体 (Exos) 作为 PDAC 归巢载体,以超越病理 ECM 的限制并增加治疗药物在肿瘤部位的积累。为了克服 PDAC 的化疗耐药性,在纯化的 Exos 上负载紫杉醇 (PTX) 和吉西他滨代谢的中间产物吉西他滨单磷酸盐 (GEMP)。本研究在肿瘤球体和PDAC原位模型上,Exo 递送平台表现出了归巢和穿透能力的优势。同时,还发现其在体内和体外均具有良好的抗肿瘤效果,且全身毒性相对较小。我们构建的 Exo 平台加载了 GEMP 和 PTX,得益于天然的 PDAC 选择性,具有出色的穿透性、抗基质性和克服化学耐药性的综合功能(图 1)。值得期待的是,Exo 平台可能为 PDAC 的靶向治疗提供一种有前途的方法。
目的:这种体外调查的目标是确定牙髓干细胞(DPSC)外泌体如何调节内源性DPSC,并将其导航转向矿物质组织再生,无论是单独还是与矿物三明治聚集体(MTA)。材料和方法:对于此研究,使用大鼠门牙收集DPSC。要从DPSC中提取外泌体,使用了一种超速离心方法。流式细胞仪用于表征DPSC-外观,并使用透射电子显微镜测量其大小。DPSC在标准培养基中孵育,并分为三组。第一个用作阴性对照组,仅包含DPSC;在第二组中,DPSC用外泌体处理;在第三组中,DPSC用MTA和外泌体处理。然后,使用细胞活力测定法来帮助细胞增殖。成骨分化。使用单向方差测试分析,然后进行事后测试(P≤0.05),研究了组之间的总体意义。结果:纸浆干细胞外泌体触发DPSC的增殖。MTA与外泌体结合的存在会导致更高的增殖率(P <0.001)。此外,与其他组相比,当用艾丽莎白红染色时,外泌体/MTA组显示出更大的结节形成(p <0.001)。另外,骨钙素的表达是外泌体/MTA组中最大的。结论:DPSC释放的外泌体诱导分化和矿化潜力。此外,MTA和外泌体的组合有可能在临床环境中显着增强无细胞再生牙髓牙齿牙齿牙齿。
gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国
骨骼脆弱性。2各种内部和外部因素加速了骨质流失过程,使骨骼更容易骨折。内部因素在青年,荷尔蒙和遗传疾病,血管和生化状况中的最高骨密度。另一方面,体育锻炼,营养,各种疾病,药物的消费是外部因素的例子。3骨质疏松症可以被视为骨折的危险因素。由于骨质疏松症的生长和骨质疏松症的生长,骨折的发生率越来越频繁,尤其是由于两种性别的全球衰老人群的增长。这些较高的骨折和骨质疏松症的发生率,尤其是在老年人群中,引起了增强的身体和心理问题,对卫生系统施加了高死亡率和沉重的成本。2
1再生加工厂有限责任公司,34176 US Highway 19 N,棕榈港,佛罗里达州34684,美国; harrell@regenerativeplant.org博士2伯尔尼大学伯尔尼大学解剖研究所,瑞士伯尔尼,伯尔尼2号; valentin.djonov@unibe.ch 3 3心理学系,关于生物和化学危害的有害作用研究中心,Kragujevac大学医学科学学院,69 Svetozara Markovica Street,34000 Kragujevac,塞尔维亚; ana.volarevic@medf.kg.ac.rs 4 Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia 5 Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000诺维·萨德(Novi Sad),塞尔维亚 *通信:vladislav.volarevic@faculty-pharmacy.com;电话: +381-3430-6800
1广州市政和广东省分子靶与临床药理学,NMPA和州呼吸道疾病的国家主要实验室,药学学院以及第六位附属医院,医学院,医学院,医学院,医学科学学院,广州医学院,古祖511436,中国广州511436,中国; chenfei@gzhmu.edu.cn(f.c.); Chenzhida1998@163.com(Z.C.); wuhuiting2000@163.com(H.-T.W.); XINXIANG8375@163.com(X.-X.C.); 13532826402@163.com(P.Z.); 13724372709@163.com(Z.-Y.W.); xjiang@gzhmu.edu.cn(X.J.); shenao@gzhmu.edu.cn(A.S。)2附属癌症医院和广州医科大学,广州市政和广东省蛋白质修饰和降解蛋白质修饰和退化的关键实验室,癌症研究与转化医学中心,基础医学科学学院广州医科大学的第六位分支机构医院,中国青尤恩人民医院511518; oyzz8100@126.com 4州病毒学国家主要实验室,CAS脑科学与情报技术卓越中心(CEBSIT),武汉病毒学研究所,中国科学院,武汉430071,中国; luomh@wh.iov.cn 5南科医学院血液学系510515,中国6号州6个州磁共振和原子与分子物理学的主要实验室,武汉国家磁共振中心,武汉,物理与数学研究所,武汉学会liuqifa@smu.edu.cn(q.l.); zhouyp@apm.ac.cn(y.-p.z.); qinaiping@gzhmu.edu.cn(A.Q。)†这些作者为这项工作做出了同样的贡献。
外泌体是由脂质双层包围并由许多细胞类型释放的小囊泡,由于其能够充当具有治疗潜力的疾病和药剂的能力,因此被广泛分散,并在再生医学领域受到了越来越多的关注。外泌体在细胞之间通过许多生物分子的转移,包括蛋白质,脂质,RNA和其他分子成分,在介导细胞间通信中起着至关重要的作用。蛋白质和核酸向特定细胞的靶向运输具有增强或损害特定生物学功能的潜力。外泌体具有许多应用,可以单独使用或与其他治疗方法结合使用。对这些因素的独特属性和许多功能的检查已成为生物医学研究领域的重要研究领域。此手稿总结了外泌体的起源和特性,包括它们的结构,生物学,物理和化学方面。本文对组织修复和再生医学的最新进展进行了完整的研究,强调了这些方法在即将发生的组织再生尝试中的可能影响。
摘要:脂肪填充是肿瘤切除后乳房重建的一种选择,以避免基于植入物的重建的融合。尽管对富含间充质干细胞的组织的肿瘤学安全存在一些担忧,并具有促血管生成和增生的支持性特性,但也有报道称,脂肪 - 组织衍生的干细胞可以表现出抗肿瘤的正常状态。我们分离了原代脂肪组织衍生的干细胞。从细胞培养物中收集条件培养基和外泌体,并用于治疗乳腺癌细胞系MCF-7。细胞活力,细胞毒性和MCF-7细胞对间接共培养的基因表达。与与脂肪衍生的干细胞调节培养基一起孵育的MCF-7细胞相比,与脂肪组织衍生的干细胞一起孵育的MCF-7细胞显示细胞活力降低。促凋亡基因的表达上调,抗凋亡基因的表达下调。关于肿瘤切除后自体脂肪嫁接的肿瘤学的辩论继续进行。在这里,我们表明来自脂肪组织衍生的干细胞的外泌体在乳腺癌细胞系MCF-7上表现出一些抗肿瘤特性。